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1. BioSeq-Analysis-Res for residue-level 

analysis 

1.1 Introduction 

The platform BioSeq-Analysis2.0 stand-alone package has two parts, for this section, 

we will introduce the residue-level analysis tool, for convenience, we call it 

BioSeq-Analysis-Res. The BioSeq-Analysis-Res is a updated platform for residue 

level analysis of DNA, RNA and Protein based on machine learning approaches, 

which can automatically implement the main procedures for constructing a predictor 

based on machine learning techniques, including feature extraction, parameter 

optimization, model training and performance evaluation. In the feature extraction step, 

totally 26 modes were provided for users, of which 7 for DNA residues, 6 for RNA 

residues and 13 for protein residues. In the predictor construction step, four machine 

learning algorithms are available: support vector machine (SVM) (1), random forest 

(RF) (2,3),conditional random fields(4). In order to handle large dataset, the 

stand-alone package of BioSeq-Analysis-Res is given. More details will be introduced 

in the following parts of the manual. 

1.2 Installation 

The BioSeq-Analysis-Res package can be run on Linux (64-bit) and Windows (64-bit) 

operating system. The full package and documents of BioSeq-Analysis2.0 are 

available at http://bliulab.net/BioSeq-Analysis2.0/download.  

For Windows 

The Windows 7 or later versions are supported. 

Before using BioSeq-Analysis-Res, the Python software should be first installed and 

configured. Python 2.7 64-bit is recommended, which can be downloaded from 

https://www.python.org.  

 

The next step is the installation and configuration of LIBSVM (5), which you can 

download from (Version 3.22, December 2016) 

https://www.csie.ntu.edu.tw/~cjlin/libsvm/#download 

 

Then extract the package to BioSeq-Analysis-Res as a folder named libsvm. After 

un-zip the downloaded package, make sure that the “libsvm.dll” is available in the 

directory “..\libsvm\windows”, and then put the file “__init__.py” and “checkdata.py” 

which is in the directory “..\ supplement” into the folder“ ..\libsvm ”. Next, put the 

“__init__.py” and “plotroc.py” which is in the “.. \ supplement” into the directory 

“..\libsvm\python”. 

 

The FlexCRFs(6)is also needed for BioSeq-Analysis-Res, so you can download it 

from: 

http://flexcrfs.sourceforge.net/download.html. 

Then extract the package to BioSeq-Analysis-Res as a folder named FlexCRFs-0.3, 

and you need makefile for FlexCRFs-0.3,  

For more details you can see the flexcrf-manual in \FlexCRFs-0.3\docs\.  

http://bliulab.net/BioSeq-Analysis2.0/download
https://www.python.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/#download
http://flexcrfs.sourceforge.net/download.html
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Then, the tool gnuplot (7) is need, which you can download from (Version4.6.5): 

https://sourceforge.net/projects/gnuplot/files/gnuplot/4.6.5/gp465-win32.zip/download 

 

After installed the gnuplot, the Python package Numpy (8), SciPy (9), and matplotlib 

(10) should be downloaded from here: http://www.lfd.uci.edu/~gohlke/pythonlibs/, or 

use the following command to install : 

> pip install numpy-<version>+mkl-cp<ver-spec>-cp<ver-spec>m-<cpu-build>.whl 

> pip install matplotlib-<version>-cp<ver-spec>-cp<ver-spec>m-<cpu-build>.whl 

> pip install matplotlib-<version>-cp<ver-spec>-cp<ver-spec>m-<cpu-build>.whl 

 

The Python package scikit-learn (11) should be downloaded and installed from: 

http://scikit-learn.org/dev/install.html, or use the following commands if Internet is 

accessible: 

> pip install scikit-learn 

 

The Python package imbalanced-learn (12) can be installed by using this command 

line: 

> pip install -U imbalanced-learn 

 

The Python package pandas (13) can be installed by using this command line: 

> pip install pandas 

For Linux 

For Linux operating system, the libsvm and the flexcrfs should be configured as 

Windows firstly.  

 

Extract the package to BioSeq-Analysis-Res as a folder named libsvm, then put the 

file “__init__.py” and “checkdata.py” which is in the directory “..\ supplement” into 

the folder“ ..\libsvm ”. Next, put the “__init__.py” and “plotroc.py” which is in the “.. 

\ supplement” into the directory “..\libsvm\python”. 

 

Navigate to “~/usr/BioSeq-Analysis2.0/ BioSeq-Analysis-Res/libsvm” directory, and 

type the command: 

> make 

After executing successfully, then navigate to “~/usr/BioSeq-Analysis2.0/ 

BioSeq-Analysis-Res /libsvm/python” directory, and type the command: 

> make 

 

The FlexCRFs is also needed for BioSeq-Analysis-Res, so you can download it from: 

http://flexcrfs.sourceforge.net/download.html. 

Then extract the package to BioSeq-Analysis-Res as a folder named FlexCRFs, and 

you need makefile for FlexCRFs,  

Compile (go to FlexCRFs directory): 

> make clean (remove any previous output) 

> make all (compile FlexCRFs) 

Install (you must login the system under the “root” privilege): 

> make install (install FlexCRFs) 

> make uninstall (uninstall FlexCRFs) 

http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://scikit-learn.org/dev/install.html
http://flexcrfs.sourceforge.net/download.html
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Given the root privilege 

> sudo chmod –R 777 FlexCrs/ 

For more details you can see the flexcrf-manual in /FlexCRFs/docs. 

If gnuplot has not been installed, use the following command lines to install gnuplot: 

> sudo apt-get install gnuplot 

Then, if your linux doesn’t have scikit-learn, numpy, scipy, matplotlib and pandas, 

you should use the commods as follows: 

> sudo apt-get install scikit-learn 

> sudo apt-get install numpy 

> sudo apt-get install scipy 

> sudo apt-get install matplotlib 

> sudo apt-get install pandas 

Not Necessary Software 

The predicted secondary structure features are generated by software PSIPRED (14) 

(15), which can be downloaded from 

http://bioinfadmin.cs.ucl.ac.uk/downloads/psipred/. 

The solvent accessible surface area features is generated by SPIDER2 (16,17), which 

can be downloaded from  

http://sparks-lab.org/pmwiki/download/index.php?Download=yueyang/SPIDER2_loc

al.tgz 

The sequence conservation score features are generated by the package rate4site (18) 

(19), which can be installed by the following command: 

> sudo apt-get install rate4site 

 

Now, BioSeq-Analysis2.0 is ready to use. 

1.3 Function description 

1.3.1 Directory structure 

The main directory contains several Python files and folders. “pp.py”, “ei.py”, 

“ssc_res.py”, “rc.py”, and “feature.py” are five executive Python scripts used for 

generating feature vectors based on the input sequence files and the selected feature 

extraction methods. “train.py” and “predict.py” are two executive scripts used for doing 

the analysis. “analysiss.py” is an executive Python scripts used for achieving the 

one-stop function. “ensemble.py” is used for ensemble learning based on the models 

generated by “train.py” or “analysiss.py”. “optimization.py” is used for evaluating the 

performance of all the predictors generated by BioSeq-Analysis-Res so as to help the 

users to find the best predictor for a specific biological sequence analysis task. The details 

of their functions will be introduced in the following sections. “const.py” contains the 

constants used in the scripts. “util.py” provides the useful functions used in the scripts. 

“rf_method.py” contains the train methods of random forest. “rf_predict.py” contains 

the predict methods of random forest. In “data” folder, there are four subfolders: 

“example” folder contains the dataset files used in the example; “final_results” folder is 

used for storing the generated model file while the “gen_files” folder is used for storing 

the generated data files in the parameter selection process. The other files in the “data” 

folder are used for feature extraction methods. Modifications of these files are not 

suggested. “docs” folder contains the related documents of BioSeq-Analysis-Res. 

 

“libsvm” folder contains the LIBSVM package. The tool for drawing ROC curve is in 

the “gnuplot” folder. “psiblast” folder contains the tools used for generating frequency 

profiles of protein sequences. To be noticed, the folder “libsvm”, “gnuplot”, “psiblast”, 

http://bioinfadmin.cs.ucl.ac.uk/downloads/psipred/
http://sparks-lab.org/pmwiki/download/index.php?Download=yueyang/SPIDER2_local.tgz
http://sparks-lab.org/pmwiki/download/index.php?Download=yueyang/SPIDER2_local.tgz
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you need download the software and configured by yourself. 

 
The main module of the BioSeq-Analysis2.0 for residue-level analysis 

1.3.2 Feature extraction 

Scripts 

“pp.py”, “rc.py”, “ssc.py”, “ei.py”and “feature.py” There are six executive Python 

scripts used for generating feature vectors based on the input sequence files and the 

selected feature extraction methods. 

The “rc.py” is used for calculating the modes in the sequence-based category and 

position-based category.The “pp.py” is used for calculating the modes in physicochemical 

property category. The “ei.py” is used for calculating the modes in the category 

profile-based. The “ssc.py” is used for calculating the modes in ml-based features 

category and predict rna secondary structure. The “feature.py” is used for calculating 

multiple modes in the four categories and achieving linear splicing for the feature 

vectors. 

Input and output 

The input file for “pp.py”, “rc.py”, “ssc.py”, “ei.py” and “feature.py” should be a 

sequence file and a label file. The sequence file should be in a valid FASTA format that 

consists of a single initial line beginning with a greater-than symbol (“>”) in the first 

column, followed by lines of sequence data. The label file should be in a valid FASTA 

format that consists of a single initial line beginning with a greater-than symbol (“>”) in 

the first column, followed by lines of label data. 

The words right after the “>” symbol in the single initial line are optional and only used 

for the purpose of identification and description.  

For example, a valid FASTA format as follows: 

Sequence Input: 

>example 

gacCagcttttaaaccgactccgtgctactgacgacca 

 

Label Input: 

>example 

1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 

 

The output file formats support three choices that are suitable for downstream 

computational analyses, such as machine learning. The first and the default choice is the 

tab format. In this format, all data is separated by TABs. The second one is the 

LIBSVM’s sparse data format. For this format, each line contains an instance and is 

ended by a '\n' character, like <label> <index1>:<value1> <index2>:<value2> ... . The 

<label> is a category label of the residue. The pair <index>:<value> gives a feature 
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(attribute) value: <index> is an integer starting from 1 and <value> is a real number. The 

third output format is the csv format. This format is similar to the tab format. The only 

difference is the separation characters between data are commas. 

1.3.3 Classifier construction 

The classifier construction part includes five main scripts: “train.py”, “predict.py”, 

“analysis.py”, and “optimization.py”. 

train.py  

Basic functions 

The “train.py” is used for training predictors and evaluating their performance based on 

the input benchmark datasets. Both binary classification and multiclass classification are 

supported. There are three main processes of “train.py”, including parameter selection, 

model training and cross validation. In the parameter selection process, the parameters 

of machine learning algorithm, SVM or RF are optimized on the validation sets. In this 

process, the multiprocessing technique is employed to significantly reduce the 

computational cost. In the model training process, SVM, RF, CRF is employed to train 

the prediction models. Finally, in the cross validation process, the performance of the 

constructed predictors is evaluated by k-fold cross-validation, jackknife or independent 

dataset test which can be selected by users. For more details of these three processes, 

please refer to the “Methods description” section. 

Input and output 

The input files of “train.py” are at least two files of feature vectors in LIBSVM format 

or CSV format generated by the feature extraction methods in“pp.py”, “position.py”, 

“profile_res.py”, “mlss.py”, “seq.py” and “feature.py”. Two files need to be input, one is 

the sequence file, another is the label files. For binary classification problem, there are 

must two kind labels in the label files.For multiclass classification, at least three kind 

labels are needed. The output file is the trained SVM model or trained Random Forest 

model listing the parameters used in the training process and the log information,  and 

the CRF method only can use through the analysiss.py, and the details you can see the 

analysiss.py. for example: 

 

c,128,g,0.5,b,0,bi_or_multi,0 

svm_type c_svc 

kernel_type rbf 

gamma 0.5 

nr_class 2 

total_sv 2871 

rho 33.5904 

label 1 -1 

nr_sv 1441 1430 

SV 

128 1:0.00108139 2:0.00108139 3:0.00108139 …… 

…… 

predict.py 

Basic functions 

The “predict.py” predicts the unseen samples independent from the benchmark dataset 

based on the trained model generated by using “train.py”. For binary classification, the 

performance of the constructed predictors is evaluated by five common performance 

measures, and the corresponding ROC curves can also be generated. For multiclass 

classification, only one measure is calculated. For more information of these functions, 

please refer to the “Methods description” section. 
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Input and output 

The input file of “predict.py” is an independent file of feature vectors in LIBSVM format 

or CSV format generated by feature extraction methods. If the label information of the 

samples is available, the performance measures of the predictors will be calculated based 

on the predicted labels and the input real labels, otherwise, the performance will not be 

evaluated. One label should be listed in each line in the label file, for example: 

 

1 

1 

1 

0 

0 

0 

…… 

 

The output of “predict.py” is a file containing the predicted labels in the same format as 

the input label file. 

analysis.py  

Basic functions 

The “analysiss.py” is the core executable file for the BioSeq-Analysis-Res standalone 

package. Its main role is training predictors and evaluating their performance based on 

the input benchmark datasets, and achieving parameter optimization at the same time. 

Both binary classification and multiclass classification are supported. There are five 

main processes of “analysiss.py”, including parameter selection, combination of the 

features, model training, cross validation and prediction on the independent dataset.  

In process of the parameter selection, the parameters of feature extraction and machine 

learning are optimized on the validation sets. In this process, the multiprocessing 

technique is employed to significantly reduce the computational cost. In the process of 

combination of the features, the feature vectors will be achieved linear splicing. In the 

process of model training, the LIBSVM package, “rf_method.py” or  FlexCRFs-0.3 

package is employed to train the prediction models. Then, in the process of cross 

validation, the performance of the constructed predictors is evaluated by k-fold 

cross-validation, jackknife or independent dataset test which can be selected by users. 

Finally, in the process of prediction on the independent dataset, the unseen samples 

independent from the benchmark dataset will be predicted based on the trained model 

generated before. For binary classification, the performance of the constructed predictors 

is evaluated by five common performance measures, and the corresponding ROC curves 

can also be generated.  

For multiclass classification, only one measure is calculated. For more details of these 

three processes, please refer to the “Methods description” section. 

Input and output 

The input files of “analysiss.py” are two files one file is biological sequence, another file 

is label sequence, which are in FASTA format. For binary classification problem, there 

are must two kind labels in the label files. For multiclass classification, at least three 

kind labels are needed. The output file contains the trained SVM model , Random Forest 

model or the CRF model listing the parameters used in the training process and the log 

information, for example: 

 

c,128,g,0.5,b,0,bi_or_multi,0 

svm_type c_svc 

kernel_type rbf 

gamma 0.5 
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nr_class 2 

total_sv 2871 

rho 33.5904 

label 1 0 

nr_sv 1441 1430 

SV 

128 1:0.00108139 2:0.00108139 3:0.00108139 …… 

…… 

 

When there is an independent dataset, if the label information of the samples is available, 

the performance measures of the predictors will be calculated based on the predicted 

labels and the input real labels, otherwise, the performance will not be evaluated. One 

label should be listed in each line in the label file, for example: 

1 

1 

1 

0 

0 

0 

…… 

 

If there has independent dataset, the output of “analysiss.py” will have a file containing 

the predicted labels in the same format as the input label file. 

1.4 Commands 

“rc.py” usage 

Command line arguments for “rc.py”: 

Required descript

ion inputfiles The input sequence file in FASTA format. 

{DNA, RNA, Protein} The sequence type. 

method The method name. 

 
-labels The input label file in FASTA format.  

   

Optional description 

-h, --help Show this help message and exit. 

-out The output files used for storing results. The number 

of output files should be the same as that of input files. 

-f {tab, svm, csv} The output format (default = tab). 

tab -- Simple format, delimited by TAB.  

svm -- The LIBSVM training data format. 

csv -- The format that can be loaded into a spreadsheet 

program. 

 

 
-sp { under, none} Balance the unbalanced data, default value is none. 

Over is oversampling technique. Under is under 

sampling technique. 
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-fragment If you use the fragment method, you need set the 

value ‘1’, or set ‘0’, default is 0. 

  -size The size of sliding window. If you use the fragment 

method，the size don’t need set. 

 

“pp.py” usage 

Command line arguments for “pp.py”: 

Required descript

ion inputfiles The input sequence file in FASTA format. 

{DNA, RNA, Protein} The sequence type. 

method The method name. 

 
-labels The input label file in FASTA format.  

   

Optional description 

-h, --help Show this help message and exit. 

-out The output files used for storing results. The number 

of output files should be the same as that of input files. 

-f {tab, svm, csv} The output format (default = tab). 

tab -- Simple format, delimited by TAB.  

svm -- The LIBSVM training data format. 

csv -- The format that can be loaded into a spreadsheet 

program. 

 

 
-sp { under, none} Balance the unbalanced data, default value is none. 

Over is oversampling technique. Under is under 

sampling technique. 

   
-fragment If you use the fragment method, you should set the 

value ‘1’, or set ‘0’, default is 0. 

-size The size of sliding window. If you use the fragment 

method，the size don’t need set. 

 

“ei.py” usage 

Command line arguments for “ei.py”: 

Required descript

ion inputfiles The input sequence file in FASTA format. 

{DNA, RNA, Protein} The sequence type. 

method The method name. 

 
-labels The input label file in FASTA format.  

   

Optional description 
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-h, --help Show this help message and exit. 

-out The output files used for storing results. The number 

of output files should be the same as that of input files. 

-f {tab, svm, csv} The output format (default = tab). 

tab -- Simple format, delimited by TAB.  

svm -- The LIBSVM training data format. 

csv -- The format that can be loaded into a spreadsheet 

program. 

 

 
-sp { under, none} Balance the unbalanced data, default value is none. 

Over is oversampling technique. Under is under 

sampling technique. 

   
-fragment If you use the fragment method, you should set the 

value ‘1’, or set ‘0’, default is 0. 

-size The size of sliding window. If you use the fragment 

method，the size don’t need set. 

 

“ssc.py” usage 

Command line arguments for “ssc.py”: 

Required descript

ion inputfiles The input sequence file in FASTA format. 

{DNA, RNA, Protein} The sequence type. 

method The method name. 

 
-labels The input label file in FASTA format.  

   

Optional description 

-h, --help Show this help message and exit. 

-out The output files used for storing results. The number 

of output files should be the same as that of input files. 

-f {tab, svm, csv} The output format (default = tab). 

tab -- Simple format, delimited by TAB.  

svm -- The LIBSVM training data format. 

csv -- The format that can be loaded into a spreadsheet 

program. 

 

 
-sp { under, none} Balance the unbalanced data, default value is none. 

Over is oversampling technique. Under is under 

sampling technique. 

   
-fragment If you use the fragment method, you should set the 

value ‘1’, or set ‘0’. default is 0. 

-size The size of sliding window. If you use the fragment 

method，the size don’t need set. 
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“feature.py” usage 

Command line arguments for “feature.py”: 

Required description 

inputfiles  The input sequence file in FASTA format. 

{DNA, RNA, Protein} The sequence type. 

method You can input several methods. The vector 

of each method implements linear 

merging. Up to 3 methods. 

 -labels The input label file in FASTA format. 

Optional description 

-h, --help Show this help message and exit. 

-out The output files used for storing results. The number 

of output files should be the same as that of input files. 

-cpu The maximum number of CPU cores used for 

multiprocessing in generating frequency profile. 

(default=1).For Top-n-gram, PDT-Profile, DT, 

AC-PSSM, CC-PSSM, ACC-PSSM, PDT methods. 

-f {tab, svm, csv} The output format (default = tab). 

tab -- Simple format, delimited by TAB. svm -- 

The LIBSVM training data format. 

csv -- The format that can be loaded into a spreadsheet 

program. 

-sp {under, none} Balance the unbalanced data, default value is none. 

Over is oversampling technique. Under is under 

sampling technique. 

-bp {1, 0} The option of batch processing. 1 is batch processing, 

0 is not. Default is 0. 

-fragment If you use the fragment method, you should set the 

value ‘1’, or set ‘0’ . 

-size The size of sliding window. If you use the fragment 

method，the size don’t need set. 

 
“train.py” usage 

Command line arguments for “train.py”: 

required description 

files The input files. 

If the algorithm is set as SVM, the format of files should be 

LIBSVM format; if the algorithm is set as rf, the format of files 

should be csv format. 

For binary classification, two files needed. 

For multiclass classification, at least three files needed. 

-m M The name of the trained SVM model. Only for svm and 

rf. 

 -label_dict Record each residue sequence’s label distribution. 
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Optional description 

-h, --help Show this help message and exit. 

-p {ACC,MCC,AUC} The performance metric used for parameter selection. 

Default value is “ACC”. 

-v V The cross validation mode. 

n: (an integer larger than 0) n-fold cross validation. 

j: (character “j”) jackknife cross validation. 

-ind The independent test dataset. 

-ml {svm, rf} The method of machine learning. svm is support vector 

machine; rf is random forest. (default is svm) 

-opt If the algorithm is set as svm: 

0: small range set c from -5 to 10, step is 2; g from -10 

to 5, step is 2. 

1: large range set c from -5 to 10, step is 1; g from -10 

to 5, step is 1. 

If the algorithm is set as rf: 

0: small range set number of trees from 100 to 600, step 

is 200. 

1: large range set number of trees from 100 to 600, step 

is 100. 

If the algorithm is set as oet_knn: 

0: small range set neighbors from 1 to 30, step is 2. 

1: large range set neighbors from 1 to 30, step is 1. 

Default value is 0. 

-b {0,1} Whether to train a SVC or SVR model for 

probability estimates, 0 or 1. Default value is 

0. 

 -cpu   The maximum number of CPU cores used for 

multiprocessing during parameter selection process. 

Default value is 1. 

-bp {1, 0} The option of batch processing. 1 is run batch processing, 0 is 

not. Default is 0. 

 

“predict.py” usage 

Command line arguments for “predict.py”: 

required description 

inputfiles The input sequence files in LIBSVM format. 

-m M The name of the trained SVM model.  

 

optional description 
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-h, --help Show this help message and exit. 

-labels LABELS The real label file. Optional. 

-ml {svm, rf } The method of machine learning. rf is 

Random Forest. (default is svm) 
-o O The output file name listing the 

predicted labels. The default name is 

“output_labels.txt”. 

  

“analysis.py” usage 

Command line arguments for “analysiss.py”: 

Required description 

inputfiles The input sequence file in FASTA format.  

{DNA, RNA, Protein} The sequence type. 

-model The name of the trained model. 

-method The method names. You can input several 

methods. The vector of each method 

implements linear merging. Up to 3 methods. 

-labels The input label file in FASTA format. 

  

 Optional description 

-h, --help Show this help message and exit. 

-b{0, 1} Whether to train a SVC or SVR model for probability 

estimates, 0 or 1.(default=0). For svm method. 
-v The cross validation mode. 

n: (an integer larger than 0) n-fold cross validation. 

j: (character “j”) jackknife cross validation. 

i: (character 'i') independent test set method. -opt Set the range of parameters to be optimized. 

0: For svm, small range set c from -5 to 10, step is 2; g 

from -10 to 5, step is 2. For random forest, trees from 

100 to 600, step is 200. 

1: large range set c from -5 to 10, step is 1; g from -10 

to 5, step is 1. For random forest, trees from 100 to 

600, step is 100. (default=0). 

-p {ACC,MCC,AUC} The performance metric used for parameter selection. 

Default value is “ACC”. 

-ind The independent test dataset.  

-out The output files used for storing results. The number 

of output files should be the same as that of input files. 

-cpu The maximum number of CPU cores used for 

multiprocessing in generating frequency profile. 

(default=1).For Top-n-gram, PDT-Profile, DT, 

AC-PSSM, CC-PSSM, ACC-PSSM, PDT methods 

and the number of CPU cores used for 

multiprocessing during parameter selection process. 

(default=1). 
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-ml {svm, rf, crf} The method of machine learning. rf is Random 

Forest. Oet_knn is Optimized Evidence-Theoretic 

K-Nearest Neighbor. Cda is covariance discriminant 

algorithm (default is svm) 

-rl The real label file. Optional. 

  
-sp {under, none} Balance the unbalanced data, default value is none. 

Over is oversampling technique. Under is under 

sampling technique. 

-bp {1, 0} The option of batch processing. 1 is batch processing, 

0 is not. Default is 0. 

-fragment If you use the fragment method, you should set the 

value ‘1’, or set ‘0’. 

-size The size of sliding window. If you use the fragment 

method，the size don’t need set. 

 
 “optimization.py” usage 

Command line arguments for “optimization.py”: 

Required description 

inputfiles The input sequence file in FASTA format. 

{DNA, RNA, Protein} The sequence type. 

-model The name of the trained model. 

-labels The input sequence file in FASTA format. 

  

 

 

Optional description 

-h, --help Show this help message and exit. 

-v The cross validation mode. 

n: (an integer larger than 0) n-fold cross validation. 

j: (character “j”) jackknife cross validation. 

i: (character 'i') independent test set method. -opt Set the range of parameters to be optimized. 

0: For svm, small range set c from -5 to 10, step is 2; g 

from -10 to 5, step is 2. For random forest, trees from 

100 to 600, step is 200. 

1: large range set c from -5 to 10, step is 1; g from -10 

to 5, step is 1. For random forest, trees from 100 to 

600, step is 100. (default=0). 

-out The output files used for storing results. The number 

of output files should be the same as that of input files. 

-cpu The maximum number of CPU cores used for 

multiprocessing in generating frequency profile. 

(default=1). 

-ml { svm, rf } The method of machine learning. rf is Random 

Forest. (default is svm) 
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-sp { under, none} Balance the unbalanced data, default value is none. 

Over is oversampling technique. Under is under 

sampling technique. 

-bp {1, 0} The option of batch processing. 1 is batch processing, 

0 is not. Default is 0. 

-fragment If you use the fragment method, you should set the 

value ‘1’, or set ‘0’. Default 0. 

-size The size of sliding window. If you use the fragment 

method，the size don’t need set. 

 
Example 

Four examples of using BioSeq-Analysis-Res to construct machine learning predictor 

for solving a specific task in bioinformatics are given. 

Example for residue level of DNA sequence. 

Reconstructing the predictor iEnhancer-2L for identify enhancers based on the 

benchmark dataset(20)  by using BioSeq-Analysis-Res. 

The benchmark dataset contains 1484 positive samples and 1484 negative samples. The 

benchmark dataset are available at  

http://bliulab.net/iEnhancer-EL/data/  

In this example, the files “dna_frag_seq.txt” and “dna_frag_label.txt” contain the 

sequence dataset and label dataset of the benchmark dataset, respectively. All these two 

files are available in the “/data/example” folder. 

 

We can use a command to implement feature extraction and model training, while 

implementing optimization parameters. 

 

python analysis.py ./data/example/dna_frag_seq.txt DNA -method One-hot -ml svm 

-labels ./data/example/dna_frag_label.txt -fragment 1 -model dna.model -opt 0 -v 5 

-cpu 5 

 

The output informations is as follows: 

 

------------ Job is doing, please wait  ------------ 

 

Processing... 

Parameters selecting of features done! 

 

Combine the features of given methods and train it... 

Method TPC is calculating... 

 

The output file(s) can be found here: 

/home/First_project/BioSeq-Analysis2.0/BioSeq-Analysis-Res/data/final_results/ 

dna_frag_seq /Category~1_svm.txt 

 

 /home/First_project/BioSeq-Analysis2.0/BioSeq-Analysis-Res/data/final_results/ 

dna_frag_seq /Category~0_svm.txt 

Processing on the best parameters... 

Parameter selection is in processing... 

 

Iteration  c =  -5  g =  -1  finished. 

Iteration  c =  -5  g =  -4  finished. 

Iteration  c =  -5  g =  -10  finished. 

http://bioinformatics.hitsz.edu.cn/iEnhancer-EL/data/
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Iteration  c =  -5  g =  -7  finished. 

Iteration  c =  -5  g =  2  finished. 

Iteration  c =  -5  g =  5  finished. 

Iteration  c =  -2  g =  -10  finished. 

Iteration  c =  -2  g =  -7  finished. 

Iteration  c =  -2  g =  -4  finished. 

Iteration  c =  -2  g =  5  finished. 

Iteration  c =  -2  g =  -1  finished. 

Iteration  c =  -2  g =  2  finished. 

Iteration  c =  1  g =  -10  finished. 

Iteration  c =  1  g =  -7  finished. 

Iteration  c =  1  g =  -4  finished. 

Iteration  c =  1  g =  -1  finished. 

Iteration  c =  1  g =  2  finished. 

Iteration  c =  4  g =  -10  finished. 

Iteration  c =  1  g =  5  finished. 

Iteration  c =  4  g =  -7  finished. 

Iteration  c =  4  g =  -4  finished. 

Iteration  c =  4  g =  -1  finished. 

Iteration  c =  4  g =  2  finished. 

Iteration  c =  4  g =  5  finished. 

Iteration  c =  7  g =  -10  finished. 

Iteration  c =  7  g =  -7  finished. 

Iteration  c =  7  g =  -4  finished. 

Iteration  c =  7  g =  -1  finished. 

Iteration  c =  7  g =  2  finished. 

Iteration  c =  7  g =  5  finished. 

Iteration  c =  10  g =  -10  finished. 

Iteration  c =  10  g =  -7  finished. 

Iteration  c =  10  g =  -4  finished. 

Iteration  c =  10  g =  -1  finished. 

Iteration  c =  10  g =  2  finished. 

Iteration  c =  10  g =  5  finished. 

The time cost for parameter selection is 218.26s 

Parameter selection completed. 

 

The optimal parameters for the dataset are: C =  1024  gamma =  0.0009765625 

 

The cross validation results are as follows: 

ACC = 0.7369 

MCC = 0.4783 

AUC = 0.8126 

Sn  = 0.6716 

Sp  = 0.8020 

 

The ROC curve has been saved. You can check it here:  

./data/ final_results/cv_roc.png  

 

Model training completed. 

The model has been saved. You can check it here: 

./data/ final_results/dna .model  

 

Done. 

Used time: 277.22s 

Total used time: 289.60s 
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The generated ROC curve is shown in Fig. 1. 

 

 
Fig .1. The ROC curve of cross validation 

 

As shown in this example, the iEhancer-2L/iEnhancer-EL can be easily constructed based 

on the benchmark dataset by using the script “analysis.py”. 

Example for residue level of RNA sequence. 

N6-Methyladenosine (m6A) is an RNA methylation modification at the nitrogen-6 

position of the adenosine base(21). Reconstructing the predictor for identification m6A 

precursors based on the benchmark dataset (22) by using BioSeq-Analysis-Res. 

The benchmark dataset contains 1452 positive samples and 1348 negative samples.  

All these two files are available in the “/data/example” folder. 

 

We can use a command to implement feature extraction and model training, while 

implementing optimization parameters. 

 

python analysis.py ./data/example/rna_frag_seq.txt RNA -method DPC -ml rf 

-labels ./data/example/rna_frag_label.txt -fragment 1 -model rna.model -opt 0 -v 5 

-cpu 5 

 

The output informations is as follows: 

 

------------ Job is doing, please wait  ------------ 

Processing... 

Parameters selecting of features done! 

 

Combine the features of given methods and train it... 

Method DPC is calculating... 

The output file(s) can be found here: 

/home/First_project/BioSeq-Analysis2.0/BioSeq-Analysis-Res/data/ final_results/ 

rna_frag_seq /Category~0_csv.txt 

/home/First_project/BioSeq-Analysis2.0/BioSeq-Analysis-Res/data/ final_results/ 

rna_frag_seq /Category~1_csv.txt 

Processing... 

Parameter selection is in processing... 

Trees are 100... 

Trees are 300... 
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Trees are 500... 

 

The time cost for parameter selection is 74.29s 

Parameter selection completed. 

 

The optimal parameter for the dataset is: Parameter = 500 

 

Model training is in processing... 

The cross validation results are as follows: 

ACC = 0.6868 

MCC = 0.3728 

AUC = 0.7387 

Sn  = 0.7073 

Sp  = 0.6647 

 

The ROC curve has been saved. You can check it here:  

./data/ final_results/cv_roc.png  

Model training completed. 

The model has been saved. You can check it here: 

./data/ final_results/ rna .model  

 

Total used time: 6186.99s 

The generated ROC curve is shown in Fig. 2. 

 

 
Fig .2. The ROC curve of cross validation 

As shown in this example, the m6A identification predictors can be easily constructed 

based on the benchmark dataset by using the script “analysis.py”. 

Example of protein 

Reconstructing the predictor for Protein disordered region identification based on the 

benchmark dataset(23), by using BioSeq-Analysis2.0.  

The benchmark dataset contains 5442 positive samples and 10232 negative samples.. 

 

In this example, the files “protein_seq.txt” and “protein_label.txt” contain the sequence 

dataset and label dataset of the benchmark dataset, respectively. T All these files are 

available in the “/data/example” folder. 

 

We can use a command to implement feature extraction and model training, while 

implementing optimization parameters. 
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python analysis.py ./data/example/ protein_seq.txt Protein 

-labels ./data/example/protein_label -method One-hot-6bit -ml crf -model 

protein.model -size 13 -opt 0 -v 5 -cpu 5  

 

The output informations is as follows: 

 

------------ Job is doing, please wait  ------------ 

 

there are 2 kinds 

Processing... 

Parameters selecting of features done! 

 

Combine the features of given methods and train it... 

Method PSFM is calculating... 

The output file(s) can be found here: 

/home/First_project/BioSeq-Analysis2.0/BioSeq-Analysis-Res/data/final_results/protein

_seq/Category~1_svm.txt 

/home/First_project/BioSeq-Analysis2.0/BioSeq-Analysis-Res/data/final_results/protein

_seq/Category~0_svm.txt 

Processing on the best parameters... 

This is model: ./ data/final_results/protein_seq/crf_app/Fold1/model.txt 

This is model:  ./ data/final_results/protein_seq/crf_app/Fold2/model.txt This is 

model: ./ data/final_results/protein_seq/crf_app/Fold3/model.txt 

This is model: ./ data/final_results/protein_seq/crf_app/Fold4/model.txt  This is 

model: ./ data/final_results/protein_seq/crf_app/Fold5/model.txt      

 

ACC = 0.7246 

MCC = 0.3640 

AUC = 0.7472 

Sn = 0.4875 

Sp = 0.8507 

The ROC curve has been saved. You can check it here:  

/home/First_project/BioSeq-Analysis2.0/BioSeq-Analysis-Res/data/final_results/ 

protein_seq /cv_roc.png  

 

Done. 

The generated ROC curve is shown in Fig. 3. 

 
Fig .3. The ROC curve of cross validation 
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As shown in this example, the predictor can be easily constructed based on the 

benchmark dataset by using the script “analysis.py”. 

 

1.5 Methods description 

1.5.1 Feature extraction 

The BioSeq-Analysis-Res stand-alone package is able to generate totally 26 different 

modes of pseudo components for Deoxyribonucleic acid, Ribonucleic acid, and Amino 

acid, including 7 modes for Deoxyribonucleic acid (Table 1-a), 6 modes for Ribonucleic 

acid (Table 2-a), and 14 modes for Amino acid (Table 3-a). The detailed information and 

reference of the 26 methods will be introduced in BioSeq-Analysis-Res description 

document which can be downloaded from here: 

http://bliulab.net/BioSeq-Analysis2.0/doc/.  

For many biological residue analysis tasks, the training sets are imbalanced. As a result, a 

predictor trained by a skewed dataset would inevitably lead to a bias consequence (24). 

The undersampling is widely used to minimize this bias consequence. For undersampling, 

some samples are randomly removed from the large class to make the number of samples 

in different classes the same. In BioSeq-Analysis2.0, the SMOTE algorithm (25) were 

employed to generate the hypothetical samples for this purpose. 

1.5.2 Parameter selection 

In LIBSVM there are two parameters c and g which can determine the performance of 

the predictor. In Random Forest there is one parameter t which can determine the 

performance of the predictor. BioSeq-Analysis-Res is able to automatically optimize 

these parameters based on the best performance on the validation set. Users can choose a 

range of the parameters for optimizing. For more information of the input format, please 

refer to “Commands” section. 

To improve the efficiency of this procedure, multiprocessing technique is applied, which 

significantly reduces the computational cost. One of the three performance measures, 

including Accuracy (ACC), Mathew’s Correlation Coefficient (MCC) and Area Under 

roc Curve (AUC) can be used as the golden standard to optimize the parameters. 

1.5.3 Predictor construction 

In the model training process, this model is trained based on LIBSVM with RBF kernel, 

Random Forest, and a sequence labeling model—CRF. 

1.5.4 Cross validation 

BioSeq-Analysis-Res provides three types of cross validation options, including k-fold 

cross validation, jackknife (leave-one-out cross validation) and independent dataset test, 

which can be chosen by the argument “-v”. Please refer to “Commands” section for 

more details. 

For binary classification, the performance of the predictor is measured by five common 

performance measures, including the accuracy (ACC), Mathew’s Correlation Coefficient 

(MCC), Area Under roc Curve (AUC), sensitivity (Sn), and specificity (Sp). 

Furthermore, the ROC (Receiver Operating Characteristic) (26) curve will also be 

generated and saved in a PNG file. 

For multiclass classification, only the performance measure of ACC is calculated since 

the other measures are not suitable for multiclass classification. 

Besides, if the parameter “-b” of libsvm is set or using the random forest, the prediction 

probability values will be output and save as a file, thus users can do further analysis 

with these data. 

1.5.5 Residue prediction 

http://bliulab.net/BioSeq-Analysis2.0/doc/
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The “predict.py” is used to predict the unseen samples based on the model trained by 

using “train.py”. The performance of the predictors can be further evaluated on the 

independent datasets. If the label information of the independent dataset is not available, 

the performance of the predictor will not be evaluated, and only the predicted labels are 

given. Otherwise, this script will output the predicted labels. For binary classification, 

the five performance measures (ACC, MCC, AUC, Sn, and Sp) will be calculated along 

with the corresponding ROC curve saved as a PNG file; for multiclass classification, 

only the performance measure ACC will be calculated.  

2. BioSeq-Analysis-Seq for sequence-level 

analysis 

2.1 Introduction 

The platform BioSeq-Analysis2.0 stand-alone package has two parts. For this section, 

we will introduce the sequence-level analysis tool, for convenience, we call it 

BioSeq-Analysis-Seq. The BioSeq-Analysis-Seq is a package for DNA, RNA and 

protein sequence analysis based on machine learning approaches, which can 

automatically implement the main procedures for constructing a predictor based on 

machine learning techniques, including feature extraction, parameter optimization, 

model training and performance evaluation. In the feature extraction step, totally 56 

modes were provided for users, of which 20 for DNA sequences, 14 for RNA 

sequences and 22 for protein sequences. In the predictor construction step, four 

machine learning algorithms are available: support vector machine (SVM) (1), random 

forest (RF) (2,3), Optimized Evidence-Theoretic K-Nearest Neighbor (OET-KNN) (27), 

and covariance discriminant algorithm (28). In order to handle large dataset, the 

stand-alone package of BioSeq-Analysis-Seq is given. More details will be introduced 

in the following parts of the manual. 

2.2 Installation 

The BioSeq-Analysis-Seq package can be run on Linux (64-bit) and Windows (64-bit) 

operating system. The full package and documents of BioSeq-Analysis-Seq are 

available at http://bliulab.net/BioSeq-Analysis2.0/download.  

For Windows 

The Windows 7 or later versions are supported. 

Before using BioSeq-Analysis-Seq, the Python software should be first installed and 

configured. Python 2.7 64-bit is recommended, which can be downloaded from 

https://www.python.org.  

 

The next step is the installation and configuration of LIBSVM (5), which you can 

download from (Version 3.22, December 2016) 

https://www.csie.ntu.edu.tw/~cjlin/libsvm/#download 

 

Then extract the package to BioSeq-Analysis-Seq as a folder named libsvm. After 

un-zip the downloaded package, make sure that the “libsvm.dll” is available in the 

directory “..\libsvm\windows”, and then put the file “__init__.py” and “checkdata.py” 

which is in the directory “..\ supplement” into the folder“ ..\libsvm ”. Next, put the 

http://bliulab.net/BioSeq-Analysis2.0/download
https://www.python.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/#download
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“__init__.py” and “plotroc.py” which is in the “.. \ supplement” into the directory 

“..\libsvm\python”. 

 

Then, the tool gnuplot (7) is need, which you can download from (Version4.6.5): 

https://sourceforge.net/projects/gnuplot/files/gnuplot/4.6.5/gp465-win32.zip/download 

 

After installed the gnuplot, the Python package Numpy (8), SciPy (9), and matplotlib 

(10) should be downloaded from here: http://www.lfd.uci.edu/~gohlke/pythonlibs/, or 

use the following command to install : 

> pip install numpy-<version>+mkl-cp<ver-spec>-cp<ver-spec>m-<cpu-build>.whl 

> pip install matplotlib-<version>-cp<ver-spec>-cp<ver-spec>m-<cpu-build>.whl 

> pip install matplotlib-<version>-cp<ver-spec>-cp<ver-spec>m-<cpu-build>.whl 

 

The Python package scikit-learn (11) should be downloaded and installed from: 

http://scikit-learn.org/dev/install.html, or use the following commands if Internet is 

accessible: 

> pip install scikit-learn 

 

The Python package imbalanced-learn (12) can be installed by using this command 

line: 

> pip install -U imbalanced-learn 

 

The Python package pandas (13) can be installed by using this command line: 

> pip install pandas 

For Linux 

For Linux operating system, the libsvm should be configured as Windows firstly.  

 

Extract the package to BioSeq-Analysis-Seq as a folder named libsvm, then put the file 

“__init__.py” and “checkdata.py” which is in the directory “..\ supplement” into the 

folder“ ..\libsvm ”. Next, put the “__init__.py” and “plotroc.py” which is in the “.. \ 

supplement” into the directory “..\libsvm\python”. 

 

Navigate to “~/usr/BioSeq-Analysis2.0/BioSeq-Analysis-Seq/libsvm” directory, and 

type the command: 

> make 

After executing successfully, then navigate to “~/usr/ 

BioSeq-Analysis2.0/BioSeq-Analysis-Seq/libsvm/python” directory, and type the 

command: 

> make 

If gnuplot has not been installed, use the following command lines to install gnuplot: 

> sudo apt-get install gnuplot 

Then, if your linux doesn’t have scikit-learn,  

numpy, scipy, matplotlib and pandas, you should use the commods as follows: 

> sudo apt-get install scikit-learn 

> sudo apt-get install numpy 

> sudo apt-get install scipy 

> sudo apt-get install matplotlib 

> sudo apt-get install pandas 

http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://scikit-learn.org/dev/install.html
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Not Necessary Software 

The predicted secondary structure features are generated by software PSIPRED (14) 

(15), which can be downloaded from 

http://bioinfadmin.cs.ucl.ac.uk/downloads/psipred/. 

The solvent accessible surface area features is generated by SPIDER2 (16,17), which 

can be downloaded from  

http://sparks-lab.org/pmwiki/download/index.php?Download=yueyang/SPIDER2_loc

al.tgz 

The sequence conservation score features are generated by the package rate4site (18) 

(19), which can be installed by the following command: 

> sudo apt-get install rate4site 

 

Now, BioSeq-Analysis-Seq is ready to use. 

 

2.3 Function description 
2.3.1 Directory structure 

 

The main directory contains several Python files and folders. “nac.py”, “acc.py”, 

“pse.py”, “sc.py”, “profile.py”, “ps.py” and “feature.py” are seven executive Python 

scripts used for generating feature vectors based on the input sequence files and the 

selected feature extraction methods. “train.py” and “predict.py” are two executive scripts 

used for doing the analysis. “analysiss.py” is an executive Python scripts used for 

achieving the one-stop function. “ensemble.py” is used for ensemble learning based on 

the models generated by “train.py” or “analysiss.py”. “optimization.py” is used for 

evaluating the performance of all the predictors generated by BioSeq-Analysis-Seq so as 

to help the users to find the best predictor for a specific biological sequence analysis task. 

The details of their functions will be introduced in the following sections. “const.py” 

contains the constants used in the scripts. “util.py” provides the useful functions used in 

the scripts and “util_sc.py” provides some specific functions used for “sc.py”. 

“rf_method.py” contains the train methods of random forest. “rf_predict.py” contains 

the predict methods of random forest. “acc_pssm” folder contains the tools used for 

ACC-PSSM, AC-PSSM and CC-PSSM methods. “pdt” folder contains the tools used for 

PDT and PDT-Profile methods. “docs” folder contains the related documents of 

BioSeq-Analysis-Seq. In “data” folder, there are four subfolders: “example” folder 

contains the dataset files used in the example; “final_results” folder is used for storing 

the generated model file while the “gen_files” folder is used for storing the generated 

data files in the parameter selection process. The other files in the “data” folder are used 

for feature extraction methods. Modifications of these files are not suggested. 

 

“libsvm” folder contains the LIBSVM package. The tool for drawing ROC curve is in 

the “gnuplot” folder. “psiblast” folder contains the tools used for generating frequency 

profiles of protein sequences. These three folders are created by the users. 
 

http://bioinfadmin.cs.ucl.ac.uk/downloads/psipred/
http://sparks-lab.org/pmwiki/download/index.php?Download=yueyang/SPIDER2_local.tgz
http://sparks-lab.org/pmwiki/download/index.php?Download=yueyang/SPIDER2_local.tgz
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The main module of the BioSeq-Analysis2.0 for sequence-level analysis 

2.3.2 Feature extraction 

Scripts 

“nac.py”, “acc.py”, “pse.py”, “sc.py”, “profile.py”, “ps.py” and “feature.py”. There are 

seven executive Python scripts used for generating feature vectors based on the input 

sequence files and the selected feature extraction methods. 

The “nac.py” is used for calculating the modes in the category nucleic acid composition or 

amino acid composition; the “acc.py” is used for calculating the modes in autocorrelation 

category. The “pse.py” is used for calculating the modes in the category pseudo 

nucleotide composition or pseudo amino acid composition. The “sc.py” is used for 

calculating the modes in predicted structure composition category. The “profile.py” is 

used for calculating the modes in profile-based features category. The “ps.py” is used for 

calculating the modes in predicted structure features category. The “feature.py” is used 

for calculating multiple modes in the six categories and achieving linear splicing for the 

feature vectors. 

Input and output 

The input file for “nac.py”, “acc.py”, “pse.py”, “profile.py”, “ps.py” and “feature.py” 

should be in a valid FASTA format that consists of a single initial line beginning with a 

greater-than symbol (“>”) in the first column, followed by lines of sequence data. The 

words right after the “>” symbol in the single initial line are optional and only used for the 

purpose of identification and description. For “sc.py”, the input file should be in a valid 

FASTA format with the secondary structure as follows: 

>example 

GCAUCCGGGUUGAGGUAGUAGGUUGUAUGGUUUAGAGUUACACCCUGGG

AGUUAACUGUACAACCUUCUAGCUUUCCUUGGAGC 

((.((((((..(((.(((.(((((((((((((..((.(..((...))..).))))))))))))))).))).)))..)))))))) (-31.60) 

For “feature.py”, the input file should be in a valid FASTA format if the methods used 

in “sc.py”, and if the methods used in “nac.py”, “acc.py”, “pse.py”, “profile.py” or 

“ps.py”, the input file should be in a valid FASTA format with the secondary structure. 

 

The output file formats support three choices that are suitable for downstream 

computational analyses, such as machine learning. The first and the default choice is the 

tab format. In this format, all data is separated by TABs. The second one is the 

LIBSVM’s sparse data format. For this format, each line contains an instance and is 

ended by a '\n' character, like <label> <index1>:<value1> <index2>:<value2> ... . The 

<label> is a category label of the sequence. The pair <index>:<value> gives a feature 

(attribute) value: <index> is an integer starting from 1 and <value> is a real number. The 

third output format is the csv format. This format is similar to the tab format. The only 

difference is the separation characters between data are commas. 
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Physicochemical Properties Selection 

The Physicochemical Properties Selection file is a text file that contains a list of property 

names used for generating the modes in categories: autocorrelation, pseudo nucleotide 

composition/ pseudo amino acid composition. For example, if you want to use the “Rise”, 

“Tilt” and “Shift” of DNA dinucleotide for calculating, the Physicochemical Properties 

Selection file should be written as follows: 

 

Rise 

Tilt 

Shift 

 

After saving this file as “propChosen.txt” and specifying it using the command “-i 

propChosen.txt”, or just “I propChosen.txt”, the above three properties will be used in 

calculations. Meanwhile, you can also use the command “-a True” to select all the 

built-in physicochemical properties for the corresponding sequence type, which can be 

selected by using parameter DNA, RNA or PROTEIN. 

The complete lists of physicochemical properties for DNA, RNA and protein sequences 

used in the stand-alone program are provided in Table 4-12. 

User-defined Physicochemical Properties 

In the user-defined physicochemical index files, each index should be represented in 

three lines. The first line must start with a greater-than symbol (">") in the first column. 

The words right after the ">" symbol in the single initial line are optional and only used 

for the purpose of identification and description of the index. The second line lists the 

names of the sequence compositions (i.e. amino acids, nucleotides, dinucleotides, or 

trinucleotides, etc), which should be sorted in the alphabet order, such as 'A' 'C' ... 'AA' 

'AC'. All the elements in this line should be separated by TAB. The corresponding 

values of these sequence compositions are listed in the third line, which are separated 

by TAB. 

For example, if you defined a physicochemical property “user_property”, the user- 

defined physicochemical index file should be written as follows: 

 

 

 

 

> user_property 

A 

0.21 

C …   AA AC … 

0.12 …   0.37 

 

0.15 

 

… 

 

After saving this file as “user_defined.txt” and specifying it using the command “-e 

user_defined.txt”, or just “E user_defined.txt”, the properties defined by user will be used 

in calculations. 

 

2.3.3 Classifier construction 
The classifier construction part includes five main scripts: “train.py”, “predict.py”, 

“analysis.py”, “ensemble.py” and “optimization.py”. 

train.py  

Basic functions 
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The “train.py” is used for training predictors and evaluating their performance based on 

the input benchmark datasets. Both binary classification and multiclass classification are 

supported. There are three main processes of “train.py”, including parameter selection, 

model training and cross validation. In the parameter selection process, the parameters 

of machine learning algorithm, SVM or RF are optimized on the validation sets. In this 

process, the multiprocessing technique is employed to significantly reduce the 

computational cost. In the model training process, SVM or RF is employed to train the 

prediction models. Finally, in the cross validation process, the performance of the 

constructed predictors is evaluated by k-fold cross-validation, jackknife or independent 

dataset test which can be selected by users. For more details of these three processes, 

please refer to the “Methods description” section. 

Input and output 

The input files of “train.py” are at least two files of feature vectors in LIBSVM format 

or CSV format generated by the feature extraction methods in “nac.py”, “acc.py”, 

“pse.py” , “sc.py” and “feature.py”. For binary classification problem, two files need to 

be input, storing the positive samples and the negative samples, respectively. For 

multiclass classification, at least three files are needed. The output file is the trained 

SVM model or trained Random Forest model listing the parameters used in the training 

process and the log information, for example: 

 

c,128,g,0.5,b,0,bi_or_multi,0 

svm_type c_svc 

kernel_type rbf 

gamma 0.5 

nr_class 2 

total_sv 2871 

rho 33.5904 

label 1 -1 

nr_sv 1441 1430 

SV 

128 1:0.00108139 2:0.00108139 3:0.00108139 …… 

…… 

predict.py 

Basic functions 
 

The “predict.py” predicts the unseen samples independent from the benchmark dataset 

based on the trained model generated by using “train.py”. For binary classification, the 

performance of the constructed predictors is evaluated by five common performance 

measures, and the corresponding ROC curves can also be generated. For multiclass 

classification, only one measure is calculated. For more information of these functions, 

please refer to the “Methods description” section. 

 

Input and output 
 

The input file of “predict.py” is an independent file of feature vectors in LIBSVM format 

or CSV format generated by feature extraction methods. If the label information of the 

samples is available, the performance measures of the predictors will be calculated based 

on the predicted labels and the input real labels, otherwise, the performance will not be 

evaluated. One label should be listed in each line in the label file, for example: 

 

+1 

+1 



27 
 

+1 

-1 

-1 

-1 

…… 

 

The output of “predict.py” is a file containing the predicted labels in the same format as 

the input label file. 

analysis.py  

Basic functions 
 

The “analysiss.py” is the core executable file for the BioSeq-Analysis-Seq standalone 

package. Its main role is training predictors and evaluating their performance based on 

the input benchmark datasets, and achieving parameter optimization at the same time. 

Both binary classification and multiclass classification are supported. There are five 

main processes of “analysiss.py”, including parameter selection, combination of the 

features, model training, cross validation and prediction on the independent dataset.  

In process of the parameter selection, the parameters of feature extraction and machine 

learning are optimized on the validation sets. In this process, the multiprocessing 

technique is employed to significantly reduce the computational cost. In the process of 

combination of the features, the feature vectors will be achieved linear splicing. In the 

process of model training, the LIBSVM package or “rf_method.py” is employed to train 

the prediction models. Then, in the process of cross validation, the performance of the 

constructed predictors is evaluated by k-fold cross-validation, jackknife or independent 

dataset test which can be selected by users. Finally, in the process of prediction on the 

independent dataset, the unseen samples independent from the benchmark dataset will 

be predicted based on the trained model generated before. For binary classification, the 

performance of the constructed predictors is evaluated by five common performance 

measures, and the corresponding ROC curves can also be generated.  

For multiclass classification, only one measure is calculated. For more details of these 

three processes, please refer to the “Methods description” section. 

Input and output 
 

The input files of “analysiss.py” are at least two files of biological sequence in FASTA 

format. For binary classification problem, two files need to be input, storing the positive 

samples and the negative samples, respectively. For multiclass classification, at least 

three files are needed. The output file contains the trained SVM model or the Random 

Forest model listing the parameters used in the training process and the log information, 

for example: 

 

c,128,g,0.5,b,0,bi_or_multi,0 

svm_type c_svc 

kernel_type rbf 

gamma 0.5 

nr_class 2 

total_sv 2871 

rho 33.5904 

label 1 -1 

nr_sv 1441 1430 

SV 

128 1:0.00108139 2:0.00108139 3:0.00108139 …… 

…… 
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When there is an independent dataset, if the label information of the samples is available, 

the performance measures of the predictors will be calculated based on the predicted 

labels and the input real labels, otherwise, the performance will not be evaluated. One 

label should be listed in each line in the label file, for example: 

+1 

+1 

+1 

-1 

-1 

-1 

…… 

 

If there has independent dataset, the output of “analysiss.py” will have a file containing 

the predicted labels in the same format as the input label file. 

ensemble.py 

Basic functions 

The “ensemble.py” is used for ensemble learning based on the models generated by 

“train.py” or “analysiss.py”. Both binary classification and multiclass classification are 

supported. The weight of every model can be specified by users. Default values are 1.0. 

The strategy of prediction is weighted voting. 

Input and output 

The input file should be in tab format which can be generated by the scripts for feature 

extraction. The format of label file should be the same as that of “predict.py”. The input 

model files are those generated by “train.py” or “analysis.py”. For binary classification, 

four measures, including the accuracy (ACC), Mathew’s Correlation Coefficient (MCC), 

sensitivity (Sn), and specificity (Sp) are used for performance evaluation. For multiclass 

classification, only ACC is calculated. The values of the measures will be printed on the 

screen. 

optimization.py 

Basic functions 

The “ensemble.py” is used for batch processing. This scrip is used for evaluating the 

performance of all the predictors generated by BioSeq-Analysis-Seq so as to help the 

users to find the best predictor for a specific biological sequence analysis task.  

Input and output 

The input file should be in fasta format. The parameters are similar with those in 

“analysiss.py”.  

2.4 Commands 

“nac.py” usage 

Command line arguments for “nac.py”: 

Required description 

inputfiles The input files in FASTA format. More than one file could 

be input. 

{DNA, RNA, Protein} The sequence type. 

method The method name. 

 

Optional description 
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-h, --help Show this help message and exit. 

-out The output files used for storing results. The number 

of output files should be the sa   me as that of input 

files. 

-k K The k value of kmer. 

-m M For mismatch. The max value inexact matching. 

(m<k). (default = 1) 

-delta For subsequence method. The value of penalized 

factor. (0<=delta<=1). (default = 1) 

-r {0,1} Whether consider the reverse complement or not. 1 

means True, 0 means False. (default = 0) 
-f {tab, svm, csv} The output format (default = tab). 

tab -- Simple format, delimited by TAB. svm -- 

The LIBSVM training data format. 

csv -- The format that can be loaded into a spreadsheet 

program. 

-labels The libSVM output file label.  If the argument “-f ” is 

set as “svm”, this argument is required. And the 

number of labels should be the same as that of the 

input files. For binary classification problem, the 

labels should be '+1' or '-1'; For multiclass 

classification problem, the labels can be set as 

integers. 

-ps The input positive source file in FASTA format for 

IDKmer. Only for IDKmer method. 

-ns The input negative source file in FASTA format for 

IDKmer. Only for IDKmer method. 

-max_dis The max distance value of DR and Distance Pair. Only 

for DR and Distance Pair methods(default = 3). 

-cp The reduced alphabet scheme. Choose one of the four: 

cp_13, cp_14, cp_19, cp_20. Only for Distance Pair 

method. 

-sp {over, under, 

none} 

Balance the unbalanced data, default value is none. 

Over is oversampling technique. Under is under 

sampling technique. 

“acc.py” usage 
Command line arguments for “acc.py”: 

Required description 

inputfiles The input files in FASTA format. More than one file could 

be input. 

{DNA, RNA, Protein} The sequence type. 

method The method name. 

 

Optional Description 

-h, --help Show this help message and exit. 

-out The output files used for storing results. The number 

of output files should be the same as that of input files. 

-lag LAG The value of lag. 

-i I The index file user chosen. 
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-e E The user-defined index file. 

-all_index Choose all physicochemical indices. 

-no_all_index Do not choose all physicochemical indices, default. 

-f {tab, svm, csv} The output format (default = tab). 

tab -- Simple format, delimited by TAB. 

svm -- The LIBSVM training data format. 

csv -- The format that can be loaded into a spreadsheet 

program. 

-labels The libSVM output file label.  If the argument “-f ” is 

set as “svm”, this argument is required. And the 

number of labels should be the same as that of the 

input files. For binary classification problem, the 

labels should be '+1' or '-1'; For multiclass 

classification problem, the labels can be set as 

integers. 

-lamada The value of lamada. Only for MAC, GAC, NMBAC 

methods (default=1). 

-oli Choose one kind of Oligonucleotide:  

0 represents dinucleotide, default; 

1 represents trinucleotide. 

-sp {over, under, 

none} 

Balance the unbalanced data, default value is none. 

Over is oversampling technique. Under is under 

sampling technique. 

“pse.py” usage 

Command line arguments for “pse.py”: 

Required description 

inputfiles The input files in FASTA format. More than one file could 

be input. 

{DNA, RNA, Protein} The sequence type. 

method The method name. 

 

Optional description 

-h, --help Show this help message and exit. 

-out The output files used for storing results. The number 

of output files should be the same as that of input files. 

-lamada The value of lamada (default=2). 

-w W The value of weight (default=0.1). 

-k K The value of kmer, it works only with PseKNC method. 

-e E The user-defined index file, this parameter only needs to be 

set for PC-PseDNC-General, PC-PseTNC-General, 

SC-PseDNC-General, SC-PseTNC-General, PC- 

PseAAC-General or SC-PseAAC-General. 

-all_index Choose all physicochemical indices. 

-no_all_index Do not choose all physicochemical indices, default. 
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-f {tab, svm, csv} The output format (default = tab). 

tab -- Simple format, delimited by TAB. 

svm -- The LIBSVM training data format. 

csv -- The format that can be loaded into a spreadsheet 

program. 

-labels The libSVM output file label.  If the argument “-f ” is 

set as “svm”, this argument is required. And the 

number of labels should be the same as that of the 

input files. For binary classification problem, the 

labels should be '+1' or '-1'; For multiclass 

classification problem, the labels can be set as 

integers. 

-sp {over, under, 

none} 

Balance the unbalanced data, default value is none. 

Over is oversampling technique. Under is under 

sampling technique. 

“sc.py” usage 

Command line arguments for “sc.py”: 

Required description 

inputfiles The input files in FASTA format. More than one file could 

be input. 

{DNA, RNA, Protein} The sequence type. 

method The method name. 

 

Optional description 

-h, --help Show this help message and exit. 

-out The output files used for storing results. The number 

of output files should be the same as that of input files. 

-k K The number of k adjacent structure statuses 

(default=2). It works only with PseSSC method. 

-n N The maximum distance between structure statuses 

(default=0). It works only with PseDPC method. 

-r R The value of lambda, represents the highest counted 

rank (or tier) of the structural correlation along a RNA 

chain (default=2). 

-w W The weight factor used to adjust the effect of the correlation 

factors (default=0.1). 

-f {tab, svm, csv} The output format (default = tab). 

tab -- Simple format, delimited by TAB. 

svm -- The LIBSVM training data format. 

csv -- The format that can be loaded into a spreadsheet 

program. 

-labels The libSVM output file label.  If the argument “-f ” is 

set as “svm”, this argument is required. And the 

number of labels should be the same as that of the 

input files. For binary classification problem, the 

labels should be '+1' or '-1'; For multiclass 

classification problem, the labels can be set as 

integers. 
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-sp {over, under, 

none} 

Balance the unbalanced data, default value is none. 

Over is oversampling technique. Under is under 

sampling technique. 

“profile.py” usage 

Command line arguments for “profile.py”: 

Required description 

inputfiles The input files in FASTA format. More than one file could 

be input. 

method The method name. 

 

Optional description 

-h, --help Show this help message and exit. 

-out The output files used for storing results. The number of 

output files should be the same as that of input files. 

-n N For Top-n-gram, PDT-Profile methods. The value of 

top-n-gram. The value cam only be 1, 2 or 3. 

-lamada For PDT, PDT-Profile methods. The value of lamada 

(default=1). -max_dis For DT methods. The max distance value of residues 

(default = 3). 

-lag LAG For ACC-PSSM, AC-PSSM and CC-PSSM methods. 

The value of lag (default = 2). 

-f {tab, svm, csv} The output format (default = tab). 

tab -- Simple format, delimited by TAB. 

svm -- The LIBSVM training data format. 

csv -- The format that can be loaded into a spreadsheet 

program. 

-labels The libSVM output file label.  If the argument “-f ” is 

set as “svm”, this argument is required. And the number 

of labels should be the same as that of the input files. For 

binary classification problem, the labels should be '+1' 

or '-1'; For multiclass classification problem, the labels 

can be set as integers. 

 -cpu   The maximum number of CPU cores used for 

multiprocessing in generating frequency profile. 

Default value is 1. 

-sp {over, under, 

none} 

Balance the unbalanced data, default value is none. Over 

is oversampling technique. Under is under sampling 

technique. 

“ps.py” usage 

Command line arguments for “ps.py”: 

Required description 

inputfiles The input files in FASTA format. More than one file could 

be input. 

method The method name. 
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Optional description 

-h, --help Show this help message and exit. 

-out The output files used for storing results. The number 

of output files should be the same as that of input files. 

-f {tab, svm, csv} The output format (default = tab). 

tab -- Simple format, delimited by TAB. 

svm -- The LIBSVM training data format. 

csv -- The format that can be loaded into a spreadsheet 

program. 

-labels The libSVM output file label.  If the argument “-f ” is 

set as “svm”, this argument is required. And the 

number of labels should be the same as that of the 

input files. For binary classification problem, the 

labels should be '+1' or '-1'; For multiclass 

classification problem, the labels can be set as 

integers. 

 -cpu   The maximum number of CPU cores used for 

multiprocessing in generating frequency profile. 

Default value is 1. 

-sp {over, under, 

none} 

Balance the unbalanced data, default value is none. 

Over is oversampling for the datasets. Under is under 

sampling for the datasets. 

  

“feature.py” usage 

Command line arguments for “feature.py”: 

Required description 

inputfiles The input files in FASTA format. More than one file could 

be input. 

{DNA, RNA, Protein} The sequence type. 

-method The method names. You can input several 

methods. The vector of each method 

implements linear merging. Up to 3 methods. 

 

Optional description 

-h, --help Show this help message and exit. 

-out The output files used for storing results. The number 

of output files should be the same as that of input files. 

-k K The number of k adjacent structure statuses. 

(default=2). It works with PseKNC, PseSSC, Kmer, 

RevKmer, IDKmer, Mismatch, Subsequence 

methods. If there are several methods, enter the 

values in turn. 

-m M For Mismatch. The max value inexact matching. 

(m<k) (default=1). If there are several methods, enter 

the values in turn. 

-delta For subsequence method. The value of penalized 

factor. (0<=delta<=1) (default=1). If there are several 

methods, enter the values in turn. 
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-r Whether consider the reverse complement or not. 1 

means True, 0 means False.  

For RevKmer methods. (default=0). 

Or the value of lambda, represents the highest 

counted rank (or tier) of the structural correlation 

along a RNA chain.  

For Triplet, PseSSC, PseDPC methods. (default=2). 

If there are several methods, enter the values in turn. 

-oli Choose one kind of Oligonucleotide:  

0 represents dinucleotide, default; 

1 represents trinucleotide. 

For DAC, DCC, DACC, TAC, TCC, TACC, MAC, 

GAC, NMBAC, AC, CC, ACC methods. If there are 

several methods, enter the values in turn. 

-lamada The value of lamada. 

For  PseDNC, PseKNC, PC-PseDNC-General, 

PC-PseTNC-General, SC-PseDNC-General, 

SC-PseTNC-General, PC-PseAAC-General, 

SC-PseAAC-General, PC-PseAAC, SC-PseAAC 

methods (default=2).  

And For MAC, PDT, PDT-Profile, GAC, NMBAC 

methods (default=1). 

If there are several methods, enter the values in turn. 

-w The weight factor used to adjust the effect of the 

correlation factors.  

For PseSSC, PseDNC, PseKNC, 

PC-PseDNC-General, PC-PseTNC-General, 

SC-PseDNC-General, SC-PseTNC-General, 

PC-PseAAC-General, SC-PseAAC-General, 

PC-PseAAC, SC-PseAAC methods (default=0.1). If 

there are several methods, enter the values in turn. 

-i The index file user chosen. If there are several 

methods, enter the values in turn. 

-e The user-defined index file. If there are several 

methods, enter the values in turn. 

-cpu The maximum number of CPU cores used for 

multiprocessing in generating frequency profile. 

(default=1).For Top-n-gram, PDT-Profile, DT, 

AC-PSSM, CC-PSSM, ACC-PSSM, PDT methods. 

-lag The value of lag. For DAC, DCC, DACC, TAC, 

TCC, TACC, AC, CC, ACC, ACC-PSSM, AC-PSSM 

and CC-PSSM methods. The value of lag (default=2). 

If there are several methods, enter the values in turn. 

-n The maximum distance between structure statuses, 

(default=0). It works with PseDPC method.  

Or for Top-n-gram, PDT-Profile methods. The value 

of top-n-gram(default=2). If there are several 

methods, enter the values in turn. 
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-f {tab, svm, csv} The output format (default = tab). 

tab -- Simple format, delimited by TAB. svm -- 

The LIBSVM training data format. 

csv -- The format that can be loaded into a spreadsheet 

program. 

-labels The libSVM output file label.  If the argument “-f” is 

set as “svm”, this argument is required. And the 

number of labels should be the same as that of the 

input files. For binary classification problem, the 

labels should be '+1' or '-1'; For multiclass 

classification problem, the labels can be set as 

integers. 

-ps The input positive source file in FASTA format for 

IDKmer. Only for IDKmer method. 

-ns The input negative source file in FASTA format for 

IDKmer. Only for IDKmer method. 

-max_dis The max distance value of DR, DT, Distance Pair. 

Only for DR, DT and Distance Pair methods(default = 

3). If there are several methods, enter the values in 

turn. 
-cp The reduced alphabet scheme. Choose one of the four: 

cp_13, cp_14, cp_19, cp_20. Only for Distance Pair 

method. 

-sp {over, under, 

none} 

Balance the unbalanced data, default value is none. 

Over is oversampling technique. Under is under 

sampling technique. 

-bp {1, 0} The option of batch processing. 1 is batch processing, 

0 is not. Default is 0. 

“train.py” usage 

Command line arguments for “train.py”: 

required description 

files The input files. 

If the algorithm is set as SVM, the format of files should be 

LIBSVM format; if the algorithm is set as rf, the format of files 

should be csv format; if the algorithm is set as oet_knn or cda, 

the format of files should be tab format. 

For binary classification, two files needed. 

For multiclass classification, at least three files needed. 

-m M The name of the trained SVM model. Only for svm and 

rf. 

 

Optional description 

-h, --help Show this help message and exit. 

-p {ACC,MCC,AUC} The performance metric used for parameter selection. 

Default value is “ACC”. 

-v V The cross validation mode. 

n: (an integer larger than 0) n-fold cross validation. 

j: (character “j”) jackknife cross validation. 
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-ind The independent test dataset, The input files in FASTA 

format. 

-ml {svm, rf, oet_knn, 

cda} 

The method of machine learning. svm is support vector 

machine; rf is random forest; oet_knn is Optimized 

Evidence-Theoretic KNN algorithm; 

cda is covariance discriminant algorithm. (default is 

svm) 

-opt If the algorithm is set as svm: 

0: small range set c from -5 to 10, step is 2; g from -10 

to 5, step is 2. 

1: large range set c from -5 to 10, step is 1; g from -10 

to 5, step is 1. 

If the algorithm is set as rf: 

0: small range set number of trees from 100 to 600, step 

is 200. 

1: large range set number of trees from 100 to 600, step 

is 100. 

If the algorithm is set as oet_knn: 

0: small range set neighbors from 1 to 30, step is 2. 

1: large range set neighbors from 1 to 30, step is 1. 

Default value is 0. 

-b {0,1} Whether to train a SVC or SVR model for 

probability estimates, 0 or 1. Default value is 

0. 

 -cpu CPU   The maximum number of CPU cores used for 

multiprocessing during parameter selection process. 

Default value is 1. 

-bp {1, 0} The option of batch processing. 1 is run batch processing, 0 is 

not. Default is 0. 

 

 “predict.py” usage 

Command line arguments for “predict.py”: 

required description 

inputfiles The input files in LIBSVM format. 

-m M The name of the trained SVM model.  

 

optional description 

-h, --help Show this help message and exit. 

-labels LABELS The real label file. Optional. 

-ml {svm, rf } The method of machine learning. rf is 

Random Forest. (default is svm) 
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-o O The output file name listing the 

predicted labels. The default name is 

“output_labels.txt”. 

  

“ensemble.py” usage 

Command line arguments for “ensemble.py”: 

required description 

inputfile The input file in tab format. 

-labels LABELS The real label file. 

-classif The module files trained in train.py or analysis.py. 

 

optional description 

-h, --help Show this help message and exit. 

-labels LABELS The real label file. Optional. 

-w The weights of the classifiers. Default 

values are all 1.0. 

“analysis.py” usage 

Command line arguments for “analysiss.py”: 

Required description 

inputfiles The input files in FASTA format. More than one file could 

be input. 

{DNA, RNA, Protein} The sequence type. 

-model The name of the trained model. 

-method The method names. You can input several 

methods. The vector of each method 

implements linear merging. Up to 3 methods. 

  

Optional description 

-h, --help Show this help message and exit. 

-b{0, 1} Whether to train a SVC or SVR model for probability 

estimates, 0 or 1.(default=0). For svm method. 
-v The cross validation mode. 

n: (an integer larger than 0) n-fold cross validation. 

j: (character “j”) jackknife cross validation. 

i: (character 'i') independent test set method. -opt Set the range of parameters to be optimized. 

0: For svm, small range set c from -5 to 10, step is 2; g 

from -10 to 5, step is 2. For random forest, trees from 

100 to 600, step is 200. 

1: large range set c from -5 to 10, step is 1; g from -10 

to 5, step is 1. For random forest, trees from 100 to 

600, step is 100. (default=0). 

-p {ACC,MCC,AUC} The performance metric used for parameter selection. 

Default value is “ACC”. 

-ind The independent test dataset, The input files in 

FASTA format. 



38 
 

-out The output files used for storing results. The number 

of output files should be the same as that of input files. 

-k K The number of k adjacent structure statuses. (For 

PseKNC and Mismatch, default is from 1 to 4. For 

Kmer, RevKmer, IDKmer, PseSSC and Subsequence, 

default is from 1 to 3.). If there are several methods, 

enter the ranges in turn. 

-m M For Mismatch. The max value inexact matching. 

(m<k) (default is from 1 to 4). If there are several 

methods, enter the ranges in turn. 

-delta For subsequence method. The value of penalized 

factor. (0<=delta<=1) (default is from 0 to 0.8). If 

there are several methods, enter the ranges in turn. 

-a {True, False} Choose or do not choose all physicochemical indices, 

default=False. 

-r Whether consider the reverse complement or not. 1 

means True, 0 means False.  

For Kmer method. (default=0). 

Or the value of lambda, represents the highest 

counted rank (or tier) of the structural correlation 

along a RNA chain.  

For PseSSC, PseDPC methods. (default is from 1 to 

7). If there are several methods, enter the ranges in 

turn. 

-oli Choose one kind of Oligonucleotide:  

0 represents dinucleotide, default; 

1 represents trinucleotide. 

For DAC, DCC, DACC, TAC, TCC, TACC, MAC, 

GAC, NMBAC, AC, CC, ACC methods. 

-lamada The value of lamada. 

For  PseDNC, PseKNC, PC-PseDNC-General, 

PC-PseTNC-General, SC-PseDNC-General, 

SC-PseTNC-General, PC-PseAAC-General, 

SC-PseAAC-General, PC-PseAAC, SC-PseAAC, 

MAC, PDT, PDT-Profile, GAC, NMBAC methods 

(default is from 1 to 7). If there are several methods, 

enter the ranges in turn. 

-w The weight factor used to adjust the effect of the 

correlation factors.  

For PseSSC, PseDNC, PseKNC, 

PC-PseDNC-General, PC-PseTNC-General, 

SC-PseDNC-General, SC-PseTNC-General, 

PC-PseAAC-General, SC-PseAAC-General, 

PC-PseAAC, SC-PseAAC methods (default is from 

0.1 to 0.8). If there are several methods, enter the 

ranges in turn. -i The index file user chosen. 

-e The user-defined index file. 
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-cpu The maximum number of CPU cores used for 

multiprocessing in generating frequency profile. 

(default=1).For Top-n-gram, PDT-Profile, DT, 

AC-PSSM, CC-PSSM, ACC-PSSM, PDT methods 

and the number of CPU cores used for 

multiprocessing during parameter selection process. 

(default=1). -lag The value of lag. For DAC, DCC, DACC, TAC, 

TCC, TACC, AC, CC, ACC, ACC-PSSM, AC-PSSM 

and CC-PSSM methods. The value of lag (default is 

from 1 to 7). If there are several methods, enter the 

ranges in turn. 

-n The maximum distance between structure statuses, 

(default is from 1 to 4). It works with PseDPC 

method.  

Or for Top-n-gram, PDT-Profile methods. The value 

of top-n-gram (default is from 1 to 2). 

If there are several methods, enter the ranges in turn. 

-ml {svm, rf, oet_knn, 

cda} 

The method of machine learning. rf is Random 

Forest. Oet_knn is Optimized Evidence-Theoretic 

K-Nearest Neighbor. Cda is covariance discriminant 

algorithm (default is svm) 

-rl The real label file. Optional. 

-labels The libSVM output file label.  If the argument “-f ” is 

set as “svm”, this argument is required. And the 

number of labels should be the same as that of the 

input files. For binary classification problem, the 

labels should be '+1' or '-1'; For multiclass 

classification problem, the labels can be set as 

integers. 

-ps The input positive source file in FASTA format for 

IDKmer. Only for IDKmer method. 

-ns The input negative source file in FASTA format for 

IDKmer. Only for IDKmer method. 

-max_dis The max distance value of DR, DT, Distance Pair. 

Only for DR, DT and Distance Pair methods(default is 

from 1 to 4). If there are several methods, enter the 

ranges in turn. 

-cp The reduced alphabet scheme. Choose one of the four: 

cp_13, cp_14, cp_19, cp_20. Only for Distance Pair 

method. 

-sp {over, under, 

none} 

Balance the unbalanced data, default value is none. 

Over is oversampling technique. Under is under 

sampling technique. 

-bp {1, 0} The option of batch processing. 1 is batch processing, 

0 is not. Default is 0. 

“optimization.py” usage 

Command line arguments for “optimization.py”: 

Required description 

inputfiles The input files in FASTA format. More than one file could 

be input. 
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{DNA, RNA, Protein} The sequence type. 

-model The name of the trained model. 

  

Optional description 

-h, --help Show this help message and exit. 

-v The cross validation mode. 

n: (an integer larger than 0) n-fold cross validation. 

j: (character “j”) jackknife cross validation. 

i: (character 'i') independent test set method. -opt Set the range of parameters to be optimized. 

0: For svm, small range set c from -5 to 10, step is 2; g 

from -10 to 5, step is 2. For random forest, trees from 

100 to 600, step is 200. 

1: large range set c from -5 to 10, step is 1; g from -10 

to 5, step is 1. For random forest, trees from 100 to 

600, step is 100. (default=0). 

-out The output files used for storing results. The number 

of output files should be the same as that of input files. 

-cpu The maximum number of CPU cores used for 

multiprocessing in generating frequency profile. 

(default=1).For Top-n-gram, PDT-Profile, DT, 

AC-PSSM, CC-PSSM, ACC-PSSM, PDT methods 

and the number of CPU cores used for 

multiprocessing during parameter selection process. 

(default=1). -ml { svm, rf, oet_knn, 

_cda } 

The method of machine learning. rf is Random 

Forest. Oet_knn is Optimized Evidence-Theoretic 

K-Nearest Neighbor. Cda is covariance discriminant 

algorithm (default is svm) 

-labels The libSVM output file label.  If the argument “-f ” is 

set as “svm”, this argument is required. And the 

number of labels should be the same as that of the 

input files. For binary classification problem, the 

labels should be '+1' or '-1'. 

-sp {over, under, 

none} 

Balance the unbalanced data, default value is none. 

Over is oversampling technique. Under is under 

sampling technique. 

-bp {1, 0} The option of batch processing. 1 is batch processing, 

0 is not. Default is 0. 

Example 

Four examples of using BioSeq-Analysis-Seq to construct machine learning predictor 

for solving a specific task in bioinformatics are given. 

Example of DNA 

Reconstructing the predictor iDHS-EL for identification DNase I hypersensitive sites by 

fusing three different modes of pseudo nucleotide composition based on the benchmark 

dataset (22) by using BioSeq-Analysis-Seq. 

The benchmark dataset contains 280 positive samples and 737 negative samples. The 

benchmark dataset are available at here 

 

In this example, the files “dna_pos.txt” and “dna_neg.txt” contain the positive dataset 

and negative dataset of the benchmark dataset, respectively. All these two files are 

http://bioinformatics.hitsz.edu.cn/iDHS-EL/static/Supplementary%20Information%20S1.pdf
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available in the “/data/example” folder. 

 

We can use a command to implement feature extraction and model training, while 

implementing optimization parameters. 

 

python analysis.py ./data/example/dna_pos.txt ./data/example/dna_neg.txt DNA 

-method Kmer Kmer PseDNC -ml rf -k 1 3 1 3 -lamada 1 3 -w 0.1 0.2 -r 0 1 -labels 

+1 -1 -model dna.model -opt 0 -v 5 -cpu 2 

 

The output informations is as follows: 

 

Processing... 

MMethod Kmer is calculating...k is 1 trees are 100ethod Kmer is calculating...k is 1 

trees are 300 

 

The output file(s) can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_

csv_Kmer_k_1.txt 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_

csv_Kmer_k_1.txt 

The output file(s) can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_

csv_Kmer_k_1.txt 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_

csv_Kmer_k_1.txt 

Method Kmer is calculating...k is 1 trees are 500 

Method Kmer is calculating...k is 2 trees are 100 

Method Kmer is calculating...k is 2 trees are 300 

Method Kmer is calculating...k is 2 trees are 500 

Method Kmer is calculating...k is 3 trees are 100 

The output file(s) can be found here: 

C:\Users\Downloads\ 

BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_csv_Kmer_k_3.txt 

C:\Users\Downloads\ 

BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_csv_Kmer_k_3.txt 

Method Kmer is calculating...k is 3 trees are 300 

Method Kmer is calculating...k is 3 trees are 500 

 

The output file(s) with the best params can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_

csv_Kmer_k_2.txt 

 

The output file(s) with the best params can be found here: 

…… 

…… 

…… 

The output file(s) can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_

csv_PseDNC_lamada_3_w_0.2.txt 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_

csv_PseDNC_lamada_3_w_0.2.txt 

Method PseDNC is calculating...lamada is 3 w is 0.20 trees are 300 

Method PseDNC is calculating...lamada is 3 w is 0.20 trees are 500 
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The output file(s) with the best params can be found here: 

C:\Users\ 

Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_csv_PseD

NC_lamada_1_w_0.2.txt 

 

The output file(s) with the best params can be found here: 

C:\Users\Downloads\ 

BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_csv_PseDNC_lamada

_1_w_0.2.txt 

Parameters selecting of features done! 

 

 

Combine the features of given methods and train it... 

Method Kmer is calculating... 

The output file(s) can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_

csv.txt 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_

csv.txt 

Method Kmer is calculating... 

The output file(s) can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_

csv.txt 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_

csv.txt 

Method PseDNC is calculating... 

The output file(s) can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_

csv.txt 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_

csv.txt 

Processing... 

Parameter selection is in processing... 

Trees are 100... 

Trees are 300... 

Trees are 500... 

 

The time cost for parameter selection is 22.30s 

Parameter selection of Random Forest completed. 

 

The optimal parameters for the dataset is: Trees = 500 

 

 

Model training is in processing... 

The cross validation results are as follows: 

ACC = 0.8514 

MCC = 0.6084 

AUC = 0.8311 

Sn  = 0.6607 

Sp  = 0.9239 

 

The ROC curve has been saved. You can check it here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\cv_ro

c.png 
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Model training completed. 

The model has been saved. You can check it here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\dna.m

odel 

 

Total used time: 234.78s 

 

The generated ROC curve is shown in Fig. 1. 

 

 

Fig .1. The ROC curve of cross validation 

 

As shown in this example, the iDHS-EL can be easily constructed based on the 

benchmark dataset by using the script “analysis.py”. 

Example of RNA 

Reconstructing the predictor iMcRNA-PseSSC for identification of real microRNA 

precursors based on the benchmark dataset (22) by using BioSeq-Analysis-Seq. 

The benchmark dataset contains 1612 positive samples and 1612 negative samples. The 

benchmark dataset are available at here. 

 

In this example, the files “rna_pos_with_2rd_structure.txt” and 

“rna_neg_with_2rd_structure.txt” contain the positive dataset and negative dataset of the 

benchmark dataset, respectively. All these two files are available in the “/data/example” 

folder. 

 

We can use a command to implement feature extraction and model training, while 

implementing optimization parameters. 

 

python analysis.py ./data/example/rna_pos_with_2rd_structure.txt ./data/example/ 

rna_neg_with_2rd_structure.txt RNA -method PseSSC -k 1 2 -r 5 6 -w 0.4 0.6 -ml 

svm -labels +1 -1 -model rna.model -opt 0 -v 5 -cpu 4 

 

The output informations is as follows: 

 

Processing... 

Method Kmer is calculating...k is 1 c is -5 g is -10M 

ethod Kmer is calculating...k is 1 c is -5 g is -7 

The output file(s) can be found here: 

http://bioinformatics.hitsz.edu.cn/iMcRNA/download
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C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_pos_s

vm_Kmer_k_1.txthe output file(s) can be found here: 

 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_pos_s

vm_Kmer_k_1.txt 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_neg_s

vm_Kmer_k_1.txt:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\ex

ample\rna_neg_svm_Kmer_k_1.txt 

 

Method Kmer is calculating...k is 1 c is -5 g is -4 

Method Kmer is calculating...k is 1 c is -5 g is -1 

Method Kmer is calculating...k is 1 c is -5 g is 2 

Method Kmer is calculating...k is 1 c is -5 g is 5 

Method Kmer is calculating...k is 1 c is -2 g is -10 

Method Kmer is calculating...k is 1 c is -2 g is -7 

Method Kmer is calculating...k is 1 c is -2 g is -4 

Method Kmer is calculating...k is 1 c is -2 g is -1 

Method Kmer is calculating...k is 1 c is -2 g is 2 

…… 

…… 

…… 

Method Kmer is calculating...k is 1 c is 10 g is -10 

Method Kmer is calculating...k is 1 c is 10 g is -7 

Method Kmer is calculating...k is 1 c is 10 g is -4 

Method Kmer is calculating...k is 1 c is 10 g is -1 

Method Kmer is calculating...k is 1 c is 10 g is 2 

Method Kmer is calculating...k is 1 c is 10 g is 5 

Method Kmer is calculating...k is 2 c is -5 g is -10 

The output file(s) can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_pos_s

vm_Kmer_k_2.txt 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_neg_s

vm_Kmer_k_2.txt 

Method Kmer is calculating...k is 2 c is -5 g is -7 

Method Kmer is calculating...k is 2 c is -5 g is -4 

Method Kmer is calculating...k is 2 c is -5 g is -1 

Method Kmer is calculating...k is 2 c is -5 g is 2 

Method Kmer is calculating...k is 2 c is -5 g is 5 

Method Kmer is calculating...k is 2 c is -2 g is -10 

Method Kmer is calculating...k is 2 c is -2 g is -7 

…… 

…… 

Method Kmer is calculating...k is 2 c is 7 g is -1 

Method Kmer is calculating...k is 2 c is 7 g is 2 

Method Kmer is calculating...k is 2 c is 7 g is 5 

Method Kmer is calculating...k is 2 c is 10 g is -10 

Method Kmer is calculating...k is 2 c is 10 g is -7 

Method Kmer is calculating...k is 2 c is 10 g is -4 

Method Kmer is calculating...k is 2 c is 10 g is -1 

Method Kmer is calculating...k is 2 c is 10 g is 2 

Method Kmer is calculating...k is 2 c is 10 g is 5 

 

The output file(s) with the best params can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_pos_s
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vm_Kmer_k_2.txt 

 

The output file(s) with the best params can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_neg_s

vm_Kmer_k_2.txt 

Parameters selecting of features done! 

 

 

Combine the features of given methods and train it... 

Method Kmer is calculating... 

The output file(s) can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_pos_s

vm.txt 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_neg_s

vm.txt 

Processing on the best params... 

Parameter selection is in processing... 

 

Iteration  c =  10  g =  -7  finished. 

Iteration  c =  -5  g =  -1  finished. 

Iteration  c =  4  g =  -1  finished. 

Iteration  c =  4  g =  2  finished. 

Iteration  c =  4  g =  -4  finished. 

Iteration  c =  -2  g =  -4  finished. 

Iteration  c =  7  g =  -7  finished. 

Iteration  c =  1  g =  -4  finished. 

Iteration  c =  -5  g =  -4  finished. 

Iteration  c =  4  g =  5  finished. 

…… 

…… 

…… 

Iteration  c =  -5  g =  5  finished. 

Iteration  c =  1  g =  -1  finished. 

Iteration  c =  -5  g =  2  finished. 

Iteration  c =  1  g =  -10  finished. 

Iteration  c =  1  g =  2  finished. 

Iteration  c =  7  g =  5  finished. 

Iteration  c =  7  g =  -4  finished. 

Iteration  c =  10  g =  2  finished. 

The time cost for parameter selection is 74.15s 

Parameter selection completed. 

 

The optimal parameters for the dataset are: C =  16  gamma =  4 

 

 

Model training is in processing... 

The cross validation results are as follows: 

ACC = 0.7212 

MCC = 0.4435 

AUC = 0.7894 

Sn  = 0.6887 

Sp  = 0.7546 

 

The ROC curve has been saved. You can check it here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\cv_ro
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c.png 

 

Model training completed. 

The model has been saved. You can check it here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\rna.m

odel 

 

Done. 

Used time: 80.52s 

Total used time: 171.21s 
 

The generated ROC curve is shown in Fig. 2. 

 

 
Fig .2. The ROC curve of cross validation 

As shown in this example, the iMcRNA-PseSSC can be easily constructed based on the 

benchmark dataset by using the script “analysis.py”. 

Example of protein 

Reconstructing the predictor PseDNA-Pro for DNA binding protein identification based 

on the benchmark dataset (22), and evaluating its performance on an independent dataset 

(29) by using BioSeq-Analysis-Seq.  

The benchmark dataset contains 525 positive samples and 550 negative samples. There 

are 93 positive samples and 93 negative samples in the independent dataset. The 

benchmark dataset and independent dataset are available at benchmark dataset and 

independent dataset, respectively. 

 

In this example, the files “protein_pos.txt” and “protein_neg.txt” contain the positive 

dataset and negative dataset of the benchmark dataset, respectively. The samples of the 

independent dataset and their labels are stored in the files “protein_test.txt” and 

“labels.txt”, respectively. All these four files are available in the “/data/example” folder. 

 

We can use a command to implement feature extraction and model training, while 

implementing optimization parameters. 

 

python analysis.py ./data/example/Protein_pos.txt ./data/example/Protein_neg.txt 

Protein -method PC-PseAAC -lamada 2 4 -w 0.05 0.3 -ml svm -labels +1 -1 -model 

protein.model -opt 0 -v 5 

 

The output informations is as follows: 

 

Processing... 

http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/static/download/Supplementary%20S2.doc
http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/static/download/Supplementary%20S3.doc
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Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -10 

The output file(s) can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_p

os_svm_PC-PseAAC_lamada_2_w_0.05.txt 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_n

eg_svm_PC-PseAAC_lamada_2_w_0.05.txt 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -7 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -4 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -1 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is 2 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is 5 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -10 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -7 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -4 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -1 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is 2 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is 5 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -10 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -7 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -4 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -1 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is 2 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is 5 

…… 

…… 

…… 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 4 g is 5 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 7 g is -10 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 7 g is -7 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 7 g is -4 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 7 g is -1 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 7 g is 2 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 7 g is 5 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -10 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -7 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -4 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -1 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is 2 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is 5 

 

The output file(s) with the best params can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_p

os_svm_PC-PseAAC_lamada_3_w_0.05.txt 

 

The output file(s) with the best params can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_n

eg_svm_PC-PseAAC_lamada_3_w_0.05.txt 

Parameters selecting of features done! 

 

 

Combine the features of given methods and train it... 

Method PC-PseAAC is calculating... 

The output file(s) can be found here: 
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C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_p

os_svm.txt 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_n

eg_svm.txt 

Processing on the best params... 

Parameter selection is in processing... 

 

Iteration  c =  7  g =  -1  finished. 

Iteration  c =  4  g =  -10  finished. 

Iteration  c =  4  g =  5  finished. 

Iteration  c =  4  g =  -1  finished. 

Iteration  c =  10  g =  -1  finished. 

…… 

…… 

…… 

Iteration  c =  7  g =  2  finished. 

Iteration  c =  -5  g =  2  finished. 

Iteration  c =  4  g =  -4  finished. 

Iteration  c =  -2  g =  -4  finished. 

Iteration  c =  -2  g =  -1  finished. 

Iteration  c =  1  g =  -1  finished. 

Iteration  c =  4  g =  -7  finished. 

Iteration  c =  10  g =  -4  finished. 

The time cost for parameter selection is 32.54s 

Parameter selection completed. 

 

The optimal parameters for the dataset are: C =  16  gamma =  4 

 

 

Model training is in processing... 

The cross validation results are as follows: 

ACC = 0.7526 

MCC = 0.5049 

AUC = 0.8177 

Sn  = 0.7429 

Sp  = 0.7615 

 

The ROC curve has been saved. You can check it here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\cv_ro

c.png 

 

Model training completed. 

The model has been saved. You can check it here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\protei

n.model 

 

 

Done. 

Used time: 35.35s 

Total used time: 308.27s 

 

The generated ROC curve is shown in Fig. 3. 
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Fig .3. The ROC curve of cross validation 

 

 

As shown in this example, the PseDNA-Pro can be easily constructed based on the 

benchmark dataset by using the script “analysis.py”. 

 

If we want to use an independent test set to evaluate the model, we can change this 

command to: 

 

python analysis.py ./data/example/Protein_pos.txt ./data/example/Protein_neg.txt 

Protein -method PC-PseAAC -lamada 2 4 -w 0.05 0.3 -ml svm -labels +1 -1 -model 

protein.model -ind ./data/example/protein_test.txt -rl ./data/example/labels.txt -opt 0 

-v 5 -cpu 4 

 

The output informations is as follows: 

 

Processing... 

MMethod PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -10ethod 

PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -7 

 

TThe output file(s) can be found here:he output file(s) can be found here: 

 

CC:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_

pos_svm_PC-PseAAC_lamada_2_w_0.05.txt:\Users\Downloads\BioSeq-Analysis2.0\Bi

oSeq-Analysis-Seq\data\example\Protein_pos_svm_PC-PseAAC_lamada_2_w_0.05.txt 

 

CC:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_

neg_svm_PC-PseAAC_lamada_2_w_0.05.txt:\Users\Downloads\BioSeq-Analysis2.0\Bi

oSeq-Analysis-Seq\data\example\Protein_neg_svm_PC-PseAAC_lamada_2_w_0.05.txt 

 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -4 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -1 

MMethod PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is 5 

ethod PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is 2 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -10 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -7 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -4 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -1 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is 2M 

ethod PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is 5 
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Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -10 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -7 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -4 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -1 

MMethod PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is 2ethod 

PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is 5 

 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 4 g is -10 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 4 g is -7 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 4 g is -4 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 4 g is -1 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 4 g is 2 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 4 g is 5 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 7 g is -10 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 7 g is -7 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 7 g is -4 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 7 g is -1 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 7 g is 2 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 7 g is 5 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 10 g is -10 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 10 g is -7 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 10 g is -4 

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 10 g is -1 

…… 

…… 

…… 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -10 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -7 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -4 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -1 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is 2 

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is 5 

 

The output file(s) with the best params can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_p

os_svm_PC-PseAAC_lamada_2_w_0.35.txt 

 

The output file(s) with the best params can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_n

eg_svm_PC-PseAAC_lamada_2_w_0.35.txt 

Parameters selecting of features done! 

 

 

Combine the features of given methods and train it... 

Method PC-PseAAC is calculating... 

The output file(s) can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_p

os_svm.txt 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_n

eg_svm.txt 

Processing on the best params... 

Parameter selection is in processing... 

 

Iteration  c =  -5  g =  -7  finished. 

Iteration  c =  -5  g =  2  finished. 
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Iteration  c =  -2  g =  -10  finished. 

Iteration  c =  10  g =  2  finished. 

Iteration  c =  4  g =  2  finished. 

Iteration  c =  10  g =  5  finished. 

Iteration  c =  -2  g =  2  finished. 

Iteration  c =  -2  g =  5  finished. 

…… 

…… 

Iteration  c =  4  g =  -10  finished. 

Iteration  c =  7  g =  -1  finished. 

Iteration  c =  4  g =  -7  finished. 

Iteration  c =  10  g =  -10  finished. 

Iteration  c =  7  g =  2  finished. 

The time cost for parameter selection is 20.52s 

Parameter selection completed. 

 

The optimal parameters for the dataset are: C =  128  gamma =  4 

 

 

Model training is in processing... 

The cross validation results are as follows: 

ACC = 0.7423 

MCC = 0.4851 

AUC = 0.8141 

Sn  = 0.7367 

Sp  = 0.7484 

 

The ROC curve has been saved. You can check it here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\cv_ro

c.png 

 

Model training completed. 

The model has been saved. You can check it here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\protei

n.model 

 

Done. 

Used time: 23.44s 

 

Predict on the independent dataset... 

 

Method PC-PseAAC is calculating... 

The output file(s) can be found here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\protein_te

st_svm.txt 

The parameters of RBF kernel: 

c =  128  g =  4 

The performance evaluations are as follows: 

 

ACC = 0.6828 

MCC = 0.3692 

AUC = 0.7237 

Sn  = 0.7527 

Sp  = 0.6129 
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The ROC curve has been saved. You can check it here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\predic

ted_roc.png 

 

The predicted labels have been saved. You can check it here: 

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\output

_labels.txt 

 

Done. 

Used time: 1.30s 

Total used time: 183.47s 

2.5 Methods description 

2.5.1 Feature extraction 

The BioSeq-Analysis-Seq stand-alone package is able to generate totally 56 different 

modes of pseudo components for DNA, RNA, and protein sequences, including 20 modes 

for DNA sequences (Table 1-b), 14 modes for RNA sequences (Table 2-b), and 22 

modes for protein sequences (Table 3-b). The detailed information of the 56 methods will 

be introduced in BioSeq-Analysis-Seq description document which can be downloaded 

from here: http://bliulab.net/BioSeq-Analysis2.0/doc/ .    

For many biological sequence analysis tasks, the training sets are imbalanced. As a result, 

a predictor trained by a skewed dataset would inevitably lead to a bias consequence (24). 

The oversampling and undersampling are widely used to minimize this bias consequence. 

For undersampling, some samples are randomly removed from the large class to make the 

number of samples in different classes the same. For the oversampling, some hypothetical 

samples are inserted into the small classes in order to make each class with equal number 

of samples. In BioSeq-Analysis-Seq, the SMOTE algorithm (25) were employed to 

generate the hypothetical samples for this purpose. 

2.5.2 Parameter selection 

In LIBSVM there are two parameters c and g which can determine the performance of 

the predictor. In Random Forest there is one parameter t which can determine the 

performance of the predictor. In OET-KNN, there is one parameter k which can 

determine the performance of the predictor. Each method of the 56 methods achieved in 

stand-alone package has respective parameters, such as the Kmer method has parameter 

“k”. BioSeq-Analysis-Seq is able to automatically optimize these parameters based on 

the best performance on the validation set. Users can choose a range of the parameters 

for optimizing. For more information of the input format, please refer to “Commands” 

section. 

To improve the efficiency of this procedure, multiprocessing technique is applied, which 

significantly reduces the computational cost. One of the three performance measures, 

including Accuracy (ACC), Mathew’s Correlation Coefficient (MCC) and Area Under 

roc Curve (AUC) can be used as the golden standard to optimize the parameters. 

2.5.3 Predictor construction 

In the model training process, this model is trained based on LIBSVM with RBF kernel, 

Random Forest, and two lazy learning algorithms: OET-KNN and Covariance 

Discriminant. 

2.5.4 Cross validation 

BioSeq-Analysis-Seq provides three types of cross validation options, including k-fold 

cross validation, jackknife (leave-one-out cross validation) and independent dataset test, 

which can be chosen by the argument “-v”. Please refer to “Commands” section for 

http://bliulab.net/BioSeq-Analysis2.0/doc/
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more details. 

For binary classification, the performance of the predictor is measured by five common 

performance measures, including the accuracy (ACC), Mathew’s Correlation Coefficient 

(MCC), Area Under roc Curve (AUC), sensitivity (Sn), and specificity (Sp). 

Furthermore, the ROC (Receiver Operating Characteristic) (26) curve will also be 

generated and saved in a PNG file. 

For multiclass classification, only the performance measure of ACC is calculated since 

the other measures are not suitable for multiclass classification. 

Besides, if the parameter “-b” of libsvm is set or using the random forest, the prediction 

probability values will be output and save as a file, thus users can do further analysis 

with these data. 

2.5.5 Sequence prediction 

The “predict.py” is used to predict the unseen samples based on the model trained by 

using “train.py”. The performance of the predictors can be further evaluated on the 

independent datasets. If the label information of the independent dataset is not available, 

the performance of the predictor will not be evaluated, and only the predicted labels are 

given. Otherwise, this script will output the predicted labels. For binary classification, 

the five performance measures (ACC, MCC, AUC, Sn, and Sp) will be calculated along 

with the corresponding ROC curve saved as a PNG file; for multiclass classification, 

only the performance measure ACC will be calculated.  

2.5.6 Ensemble learning 

Sometimes one predictor may not achieve the expected results. By combining several 

different predictors, better prediction performance could be obtained. Thus, ensemble 

learning has been widely used. The stand-alone package of BioSeq-Analysis-Seq 

provides a script “ensemble.py” used for ensemble learning based on the predictors 

generated by “train.py” or “analysis.py”.  

 

 

 

 

Table 1-a. 7 residue-level modes for DNA sequences. 

Category Mode Description 

Residue composition 

One-hot Basic one-hot (30) 

Position-specific-2 
Position-specific of two 

nucleotides (31) 

Position-specific-3 
Position-specific of three 

nucleotides (31) 

Position-specific-4 
Position-specific of four 

nucleotides(31)  

 

Physicochemical  

property  

DPC Dinucleotide physicochemical 

(32,33) 

Trinucleotide physicochemical 

(32,33) 
TPC 

Evolutionary information BLAST-matrix BLAST-matrix (34) 
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Table 1-b. 20 sequence-level modes for DNA sequences. 

Category Mode Description 

Nucleic acid Composition 

Kmer Basic kmer (35) 

RevKmer Reverse complementary 

kmer(36,37) 

IDKmer increment of diversity (38-40) 

Mismatch The occurrences of kmers, 

allowing at most m mismatches 

(41-43) 

Subsequence The occurrences of kmers, 

allowing non-contiguous 

matches (41,43,44) 

Autocorrelation 

DAC Dinucleotide-based auto 

covariance (45,46) 

DCC Dinucleotide-based cross 

covariance (45,46) 

DACC Dinucleotide-based auto-cross 

covariance (45,46) 

TAC Trinucleotide-based auto 

covariance (45) 

TCC Trinucleotide-based cross 

covariance (45) 

TACC Trinucleotide-based auto-cross 

covariance (45) 

MAC Moran autocorrelation (47,48) 

GAC Geary autocorrelation (48,49) 

NMBAC Normalized Moreau-Broto 

autocorrelation (48,50) 

Pseudo nucleotide 

composition 

PseDNC Pseudo dinucleotide 

composition (51) 

PseKNC Pseudo k-tuple nucleotide 

composition (52,53) 

PC-PseDNC-General General parallel correlation 

pseudo dinucleotide 

composition (54) 

PC-PseTNC-General General parallel correlation 

pseudo trinucleotide 

composition (54) 

SC-PseDNC-General General series correlation 

pseudo dinucleotide 

composition (54) 

SC-PseTNC-General General series correlation 

pseudo trinucleotide 

composition (54) 

Table 2-a. 6 residue-level modes for RNA sequences. 

Category Mode Description 

Residue composition 

One-hot Basic one-hot (30) 

Position-specific-2 
Position-specific of two 

nucleotides (31) 
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Position-specific-3 
Position-specific of three 

nucleotides (31) 

Position-specific-4 
Position-specific of four 

nucleotides(31)  

Physicochemical 

property  
DPC 

Dinucleotide physicochemical 

(32,33) 

Structure composition SS Secondary structure (55) 

Table 2-b. 14 sequence-level modes for RNA sequences. 

Category Mode Description 

Nucleic acid Composition 

Kmer Basic kmer (53) 

Mismatch The occurrences of kmers, 

allowing at most m 

mismatches (41-43) 

Subsequence The occurrences of kmers, 

allowing non-contiguous 

matches (41,43,44) 

Autocorrelation 

DAC Dinucleotide-based auto 

covariance (45,46,56) 

DCC Dinucleotide-based cross 

covariance (45,46,56) 

DACC Dinucleotide-based 

auto-cross covariance 

(45,46,56) 

MAC Moran autocorrelation 

(47,48) 

GAC Geary autocorrelation 

(48,49) 

NMBAC Normalized 

Moreau-Broto 

autocorrelation (48,50) 

Pseudo nucleotide 

composition 

PC-PseDNC- General General parallel 

correlation pseudo 

dinucleotide composition 

(46,48) 

SC-PseDNC-General General series correlation 

pseudo dinucleotide 

composition (46,48) 

Predicted Structure 

composition 

Triplet Local structure-sequence 

triplet element (57) 

PseSSC Pseudo-structure status 

composition (22) 

PseDPC Pseudo-distance structure 

status pair composition 

(58) 

Table 3-a. 13 residue-level modes for protein sequences 

Category Mode Description 

Residue composition One-hot Basic one-hot (30) 
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One-hot(6-bit) 
6-dimension One-hot method 

(59) 

Binary(5-bit) 
Use five binary bit to encode 

(60) 

AESNN3 Learn from alignments (61) 

Position-specific-2 Position-specific of two 

residues (31) 

Physicochemical 

property  
PP Properties form AAindex (62) 

Structure composition 

SS Secondary structure (63) 

SASA 
Solvent accessible surface area 

(64) 

Evolutionary information 

PAM250 PAM250 matrix (65) 

BLOSUM62 BLOSUM62 matrix (66) 

PSSM PSSM matrix (67) 

PSFM Frequency profiles matrix (68) 

CS Conservation score (69) 

Table 3-b. 22 sequence-level modes for protein sequences. 

Category Mode Description 

Amino acid composition 

Kmer Basic kmer (70) 

DR Distance-based Residue 

(71) 

Distance Pair PseAAC of 

Distance-Pairs and 

Reduced Alphabet (72) 

Autocorrelation 

AC Auto covariance (45,56)  

CC Cross covariance (45,56) 

ACC Auto-cross covariance 

(45,56) 

PDT Physicochemical distance 

transformation (73) 

Pseudo amino acid 

composition 

PC-PseAAC Parallel correlation 

pseudo amino acid 

composition (74) 

SC-PseAAC Series correlation pseudo 

amino acid composition 

(75) 

PC-PseAAC-General General parallel 

correlation pseudo amino 

acid composition (74,76) 

SC-PseAAC-General General series correlation 

pseudo amino acid 

composition (75,76) 

Profile-based features 
Top-n-gram Select and combine the n 

most frequent amino acids 



57 
 

according to their 

frequencies. (70) 

PDT-Pofile Profile-based 

Physicochemical distance 

transformation (73) 

DT Distance-based 

Top-n-gram (71) 

AC-PSSM Profile-based Auto 

covariance (45) 

CC-PSSM Profile-based Cross 

covariance (45) 

ACC-PSSM Profile-based Auto-cross 

covariance (45) 

PSSM-DT PSSM distance 

transformation (77) 

PSSM-RT PSSM relation 

transformation (78) 

CS sequence conservation 

score (69) 

Predicted structure 

features 

SS secondary structure  (63) 

SASA solvent accessible surface 

area (64) 

Table 4. The names of the 148 physicochemical indices for dinucleotides. 

Base stacking Protein 
induced deformability 

B-DNA twist 

Propeller twist Duplex 
stability:(freeenergy) 

Duplex tability(disruptenergy) 

Protein DNA twist Stabilising energy of 
Z-DNA 

Aida_BA_transition 

Breslauer_dS Electron_interaction Hartman_trans_free_energy 

Lisser_BZ_transition Polar_interaction SantaLucia_dG 

Sarai_flexibility Stability Stacking_energy 

Sugimoto_dS Watson-Crick_interactio
n 

Twist 

Shift Slide Rise 

Twist stiffness Tilt stiffness Shift_rise 

Twist_shift Enthalpy1 Twist_twist 

Shift2 Tilt3 Tilt1 

Slide (DNA-protein 
complex)1 

Tilt_shift Twist_tilt 

Roll_rise Stacking energy Stacking energy1 

Propeller Twist Roll11 Rise (DNA-protein complex) 

Roll2 Roll3 Roll1 

Slide_slide Enthalpy Shift_shift 

Flexibility_slide Minor Groove Distance Rise (DNA-protein complex)1 

Roll (DNA-protein 
complex)1 

Entropy Cytosine content 

Major Groove Distance Twist (DNA-protein 
complex) 

Purine (AG) content 

Tilt_slide Major Groove Width Major Groove Depth 

Free energy6 Free energy7 Free energy4 

Free energy3 Free energy1 Twist_roll 

Flexibility_shift Shift (DNA-protein 
complex)1 

Thymine content 

Tip Keto (GT) content Roll stiffness 
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Entropy1 Roll_slide Slide (DNA-protein complex) 

Twist2 Twist5 Twist4 

Tilt (DNA-protein 
complex)1 

Twist_slide Minor Groove Depth 

Persistance Length Rise3 Shift stiffness 

Slide3 Slide2 Slide1 

Rise1 Rise stiffness Mobility to bend towards minor 
groove 

Dinucleotide GC Content A-philicity Wedge 

DNA denaturation Bending stiffness Free energy5 

Breslauer_dG Breslauer_dH Shift (DNA-protein complex) 

Helix-Coil_transition Ivanov_BA_transition Slide_rise 

SantaLucia_dH SantaLucia_dS Minor Groove Width 

Sugimoto_dG Sugimoto_dH Twist1 

Tilt Roll Twist7 

Clash Strength Roll_roll Roll (DNA-protein complex) 

Adenine content Direction Probability contacting  
nucleosome core 

Roll_shift Shift_slide Shift1 

Tilt4 Tilt2 Free energy8 

Twist (DNA-protein 
complex)1 

Tilt_rise Free energy2 

Stacking energy2 Stacking energy3 Rise_rise 

Tilt_tilt Roll4 Tilt_roll 

Minor Groove Size GC content Inclination 

Slide stiffness Melting Temperature1 Twist3 

Tilt (DNA-protein 
complex) 

Guanine content Twist6 

Major Groove Size Twist_rise Rise2 

Melting Temperature Free energy Mobility to bend towards major 
groove 

Bend   

Table 5. The names of the 12 physicochemical indices for trinucleotides. 

Bendability (DNAse) Bendability (consensus) Trinucleotide GC Content 

Consensus_roll Consensus-Rigid Dnase I 

MW-Daltons MW-kg Nucleosome 

Nucleosome positioning Dnase I-Rigid Nucleosome-Rigid 

Table 6. The names of the 90 physicochemical indices for dinucleotides. 

Base stacking Protein induced deformability B-DNA twist 

Dinucleotide GC 

Content 

A-philicity Propeller twist 

Duplex 

stability-free energy 

Duplex stability-disrupt energy DNA denaturation 

Bending stiffness Protein DNA twist Stabilising energy of 

Z-DNA 

Aida_BA_transition Breslauer_dG Breslauer_dH 

Breslauer_dS Electron_interaction Hartman_trans_free_ener

gy 

Helix-Coil_transitio

n 

Ivanov_BA_transition Lisser_BZ_transition 

Polar_interaction SantaLucia_dG SantaLucia_dH 

SantaLucia_dS Sarai_flexibility Stability 

Stacking_energy Sugimoto_dG Sugimoto_dH 
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Sugimoto_dS Watson-Crick_interaction Twist 

Tilt Roll Shift 

Slide Rise Stacking energy 

Bend Tip Inclination 

Major Groove 

Width 

Major Groove Depth Major Groove Size 

Major Groove 

Distance 

Minor Groove Width Minor Groove Depth 

Minor Groove Size Minor Groove Distance Persistance Length 

Melting 

Temperature 

Mobility to bend towards major 

groove 

Mobility to bend towards 

minor groove 

Propeller Twist Clash Strength Enthalpy 

Free energy Twist_twist Tilt_tilt 

Roll_roll Twist_tilt Twist_roll 

Tilt_roll Shift_shift Slide_slide 

Rise_rise Shift_slide Shift_rise 

Slide_rise Twist_shift Twist_slide 

Twist_rise Tilt_shift Tilt_slide 

Tilt_rise Roll_shift Roll_slide 

Roll_rise Slide stiffness Shift stiffness 

Roll stiffness Rise stiffness Tilt stiffness 

Twist stiffness Wedge Direction 

Flexibility_slide Flexibility_shift Entropy 

Table 7. The names of the 6 physicochemical indices for dinucleotides. 

Twist Tilt Roll 
Shift Slide Rise 

Table 8. The names of the 22 physicochemical indices for dinucleotides. 

Shift (RNA) Hydrophilicity (RNA) 
Hydrophilicity (RNA) GC content 
Purine (AG) content Keto (GT) content 
Adenine content Guanine content 
Cytosine content Thymine content 
Slide (RNA) Rise (RNA) 
Tilt (RNA) Roll (RNA) 
Twist (RNA) Stacking energy (RNA) 
Enthalpy (RNA) Entropy (RNA) 
Free energy (RNA) Free energy (RNA) 
Enthalpy (RNA) Entropy (RNA) 

Table 9. The names of the 11 physicochemical indices for dinucleotides. 

Shift Slide Rise 
Tilt Roll Twist 
Stacking energy Enthalpy Entropy 

Free energy Hydrophilicity  

Table 10. The names of the 547 physicochemical indices for amino acids. 

Hydrophobicity Hydrophilicity Mass 

ARGP820102 ARGP820103 BEGF750101 

BHAR880101 BIGC670101 BIOV880101 

BROC820102 BULH740101 BULH740102 

BUNA790103 BURA740101 BURA740102 

CHAM820102 CHAM830101 CHAM830102 

CHAM830105 CHAM830106 CHAM830107 
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CHOC760101 CHOC760102 CHOC760103 

CHOP780201 CHOP780202 CHOP780203 

CHOP780206 CHOP780207 CHOP780208 

CHOP780211 CHOP780212 CHOP780213 

CHOP780216 CIDH920101 CIDH920102 

CIDH920105 COHE430101 CRAJ730101 

DAWD720101 DAYM780101 DAYM780201 

EISD840101 EISD860101 EISD860102 

FASG760102 FASG760103 FASG760104 

FAUJ880101 FAUJ880102 FAUJ880103 

FAUJ880106 FAUJ880107 FAUJ880108 

FAUJ880111 FAUJ880112 FAUJ880113 

FINA910102 FINA910103 FINA910104 

GEIM800102 GEIM800103 GEIM800104 

GEIM800107 GEIM800108 GEIM800109 

GOLD730101 GOLD730102 GRAR740101 

GUYH850101 HOPA770101 HOPT810101 

HUTJ700103 ISOY800101 ISOY800102 

ISOY800105 ISOY800106 ISOY800107 

JANJ780102 JANJ780103 JANJ790101 

JOND750102 JOND920101 JOND920102 

KANM800101 KANM800102 KANM800103 

KARP850102 KARP850103 KHAG800101 

KRIW790101 KRIW790102 KRIW790103 

LEVM760101 LEVM760102 LEVM760103 

LEVM760106 LEVM760107 LEVM780101 

LEVM780104 LEVM780105 LEVM780106 

LIFS790102 LIFS790103 MANP780101 

MAXF760103 MAXF760104 MAXF760105 

MEEJ800101 MEEJ800102 MEEJ810101 

MEIH800102 MEIH800103 MIYS850101 

NAGK730103 NAKH900101 NAKH900102 

NAKH900105 NAKH900106 NAKH900107 

NAKH900110 NAKH900111 NAKH900112 

NAKH920102 NAKH920103 NAKH920104 

NAKH920107 NAKH920108 NISK800101 

OOBM770101 OOBM770102 OOBM770103 

OOBM850101 OOBM850102 OOBM850103 

PALJ810101 PALJ810102 PALJ810103 

PALJ810106 PALJ810107 PALJ810108 

PALJ810111 PALJ810112 PALJ810113 

PALJ810116 PARJ860101 PLIV810101 

PONP800103 PONP800104 PONP800105 

PONP800108 PRAM820101 PRAM820102 

PRAM900102 PRAM900103 PRAM900104 

QIAN880101 QIAN880102 QIAN880103 

QIAN880106 QIAN880107 QIAN880108 

QIAN880111 QIAN880112 QIAN880113 

QIAN880116 QIAN880117 QIAN880118 

QIAN880121 QIAN880122 QIAN880123 

QIAN880126 QIAN880127 QIAN880128 

QIAN880131 QIAN880132 QIAN880133 

QIAN880136 QIAN880137 QIAN880138 
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RACS770102 RACS770103 RACS820101 

RACS820104 RACS820105 RACS820106 

RACS820109 RACS820110 RACS820111 

RACS820114 RADA880101 RADA880102 

RADA880105 RADA880106 RADA880107 

RICJ880102 RICJ880103 RICJ880104 

RICJ880107 RICJ880108 RICJ880109 

RICJ880112 RICJ880113 RICJ880114 

RICJ880117 ROBB760101 ROBB760102 

ROBB760105 ROBB760106 ROBB760107 

ROBB760110 ROBB760111 ROBB760112 

ROSG850101 ROSG850102 ROSM880101 

SIMZ760101 SNEP660101 SNEP660102 

SUEM840101 SUEM840102 SWER830101 

TANS770103 TANS770104 TANS770105 

TANS770108 TANS770109 TANS770110 

VASM830103 VELV850101 VENT840101 

WEBA780101 WERD780101 WERD780102 

WOEC730101 WOLR810101 WOLS870101 

YUTK870101 YUTK870102 YUTK870103 

ZIMJ680101 ZIMJ680102 ZIMJ680103 

AURR980101 AURR980102 AURR980103 

AURR980106 AURR980107 AURR980108 

AURR980111 AURR980112 AURR980113 

AURR980116 AURR980117 AURR980118 

ONEK900101 ONEK900102 VINM940101 

VINM940104 MUNV940101 MUNV940102 

MUNV940105 WIMW960101 KIMC930101 

PARS000101 PARS000102 KUMS000101 

KUMS000104 TAKK010101 FODM020101 

NADH010103 NADH010104 NADH010105 

MONM990201 KOEP990101 KOEP990102 

CEDJ970103 CEDJ970104 CEDJ970105 

FUKS010103 FUKS010104 FUKS010105 

FUKS010108 FUKS010109 FUKS010110 

AVBF000101 AVBF000102 AVBF000103 

AVBF000106 AVBF000107 AVBF000108 

MITS020101 TSAJ990101 TSAJ990102 

WILM950101 WILM950102 WILM950103 

GUOD860101 JURD980101 BASU050101 

SUYM030101 PUNT030101 PUNT030102 

GEOR030103 GEOR030104 GEOR030105 

GEOR030108 GEOR030109 ZHOH040101 

BAEK050101 HARY940101 PONJ960101 

OLSK800101 KIDA850101 GUYH850102 

GUYH850105 ROSM880104 ROSM880105 

BLAS910101 CASG920101 CORJ870101 

CORJ870104 CORJ870105 CORJ870106 

MIYS990101 MIYS990102 MIYS990103 

ENGD860101 FASG890101 TANS770101 

ANDN920101 ARGP820101 TANS770106 

BEGF750102 BEGF750103 VASM830101 

BIOV880102 BROC820101 VHEG790101 
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BUNA790101 BUNA790102 WERD780103 

CHAM810101 CHAM820101 WOLS870102 

CHAM830103 CHAM830104 YUTK870104 

CHAM830108 CHOC750101 ZIMJ680104 

CHOC760104 CHOP780101 AURR980104 

CHOP780204 CHOP780205 AURR980109 

CHOP780209 CHOP780210 AURR980114 

CHOP780214 CHOP780215 AURR980119 

CIDH920103 CIDH920104 VINM940102 

CRAJ730102 CRAJ730103 MUNV940103 

DESM900101 DESM900102 MONM990101 

EISD860103 FASG760101 KUMS000102 

FASG760105 FAUJ830101 NADH010101 

FAUJ880104 FAUJ880105 NADH010106 

FAUJ880109 FAUJ880110 CEDJ970101 

FINA770101 FINA910101 FUKS010101 

GARJ730101 GEIM800101 FUKS010106 

GEIM800105 GEIM800106 FUKS010111 

GEIM800110 GEIM800111 AVBF000104 

GRAR740102 GRAR740103 AVBF000109 

HUTJ700101 HUTJ700102 COSI940101 

ISOY800103 ISOY800104 WILM950104 

ISOY800108 JANJ780101 BASU050102 

JANJ790102 JOND750101 GEOR030101 

JUKT750101 JUNJ780101 GEOR030106 

KANM800104 KARP850101 ZHOH040102 

KLEP840101 KRIW710101 DIGM050101 

KYTJ820101 LAWE840101 GUYH850103 

LEVM760104 LEVM760105 JACR890101 

LEVM780102 LEVM780103 CORJ870102 

LEWP710101 LIFS790101 CORJ870107 

MAXF760101 MAXF760102 MIYS990104 

MAXF760106 MCMT640101 TANS770102 

MEEJ810102 MEIH800101 TANS770107 

NAGK730101 NAGK730102 VASM830102 

NAKH900103 NAKH900104 WARP780101 

NAKH900108 NAKH900109 WERD780104 

NAKH900113 NAKH920101 WOLS870103 

NAKH920105 NAKH920106 ZASB820101 

NISK860101 NOZY710101 ZIMJ680105 

OOBM770104 OOBM770105 AURR980105 

OOBM850104 OOBM850105 AURR980110 

PALJ810104 PALJ810105 AURR980115 

PALJ810109 PALJ810110 AURR980120 

PALJ810114 PALJ810115 VINM940103 

PONP800101 PONP800102 MUNV940104 

PONP800106 PONP800107 BLAM930101 

PRAM820103 PRAM900101 KUMS000103 

PTIO830101 PTIO830102 NADH010102 

QIAN880104 QIAN880105 NADH010107 

QIAN880109 QIAN880110 CEDJ970102 

QIAN880114 QIAN880115 FUKS010102 

QIAN880119 QIAN880120 FUKS010107 



63 
 

QIAN880124 QIAN880125 FUKS010112 

QIAN880129 QIAN880130 AVBF000105 

QIAN880134 QIAN880135 YANJ020101 

QIAN880139 RACS770101 PONP930101 

RACS820102 RACS820103 KUHL950101 

RACS820107 RACS820108 BASU050103 

RACS820112 RACS820113 GEOR030102 

RADA880103 RADA880104 GEOR030107 

RADA880108 RICJ880101 ZHOH040103 

RICJ880105 RICJ880106 WOLR790101 

RICJ880110 RICJ880111 GUYH850104 

RICJ880115 RICJ880116 COWR900101 

ROBB760103 ROBB760104 CORJ870103 

ROBB760108 ROBB760109 CORJ870108 

ROBB760113 ROBB790101 MIYS990105 

ROSM880102 ROSM880103 SNEP660104 

SNEP660103   

Table 11. The names of the 3 physicochemical indices for amino acids. 

Hydrophobicity hydrophilicity mass 

Table 12. The names of the 2 physicochemical indices for amino acids. 

Hydrophobicity hydrophilicity  
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