
BioSeq-Analysis2.0: an updated stand-alone

package for analyzing DNA, RNA, and

protein sequences at sequence level and

residue level based on machine learning

approaches

Manual of stand-alone tool of BioSeq-Analysis2.0

2019-7-18

Home-page: http://bliulab.net/BioSeq-Analysis2.0/

http://bliulab.net/BioSeq-Analysis2.0/

1

Contents
1.BioSeq-Analysis-Res for residue-level analysis 2

1.1 Introduction .. 2

1.2 Installation .. 2

1.3 Function description ... 4

1.4 Commands .. 8

1.5 Methods description ... 20

2.BioSeq-Analysis-Seq for sequence-level analysis 21

2.1 Introduction .. 21

2.2 Installation .. 21

2.3 Function description ... 23

2.4 Commands .. 28

2.5 Methods description ... 52

Table 1-a. 7 residue-level modes for DNA sequences. .. 53

Table 1-b. 20 sequence-level modes for DNA sequences. .. 54

Table 2-a. 6 residue-level modes for RNA sequences. .. 54

Table 2-b. 14 sequence-level modes for RNA sequences.. 55

Table 3-a. 13 residue-level modes for protein sequences .. 55

Table 3-b. 22 sequence-level modes for protein sequences. .. 56

Table 4. The names of the 148 physicochemical indices for dinucleotides. 57

Table 5. The names of the 12 physicochemical indices for trinucleotides. 58

Table 6. The names of the 90 physicochemical indices for dinucleotides. 58

Table 7. The names of the 6 physicochemical indices for dinucleotides....................... 59

Table 8. The names of the 22 physicochemical indices for dinucleotides. 59

Table 9. The names of the 11 physicochemical indices for dinucleotides. 59

Table 10. The names of the 547 physicochemical indices for amino acids. 59

Table 11. The names of the 3 physicochemical indices for amino acids. 63

Table 12. The names of the 2 physicochemical indices for amino acids. 63

References ... 63

2

1. BioSeq-Analysis-Res for residue-level

analysis

1.1 Introduction

The platform BioSeq-Analysis2.0 stand-alone package has two parts, for this section,

we will introduce the residue-level analysis tool, for convenience, we call it

BioSeq-Analysis-Res. The BioSeq-Analysis-Res is a updated platform for residue

level analysis of DNA, RNA and Protein based on machine learning approaches,

which can automatically implement the main procedures for constructing a predictor

based on machine learning techniques, including feature extraction, parameter

optimization, model training and performance evaluation. In the feature extraction step,

totally 26 modes were provided for users, of which 7 for DNA residues, 6 for RNA

residues and 13 for protein residues. In the predictor construction step, four machine

learning algorithms are available: support vector machine (SVM) (1), random forest

(RF) (2,3),conditional random fields(4). In order to handle large dataset, the

stand-alone package of BioSeq-Analysis-Res is given. More details will be introduced

in the following parts of the manual.

1.2 Installation

The BioSeq-Analysis-Res package can be run on Linux (64-bit) and Windows (64-bit)

operating system. The full package and documents of BioSeq-Analysis2.0 are

available at http://bliulab.net/BioSeq-Analysis2.0/download.

For Windows

The Windows 7 or later versions are supported.

Before using BioSeq-Analysis-Res, the Python software should be first installed and

configured. Python 2.7 64-bit is recommended, which can be downloaded from

https://www.python.org.

The next step is the installation and configuration of LIBSVM (5), which you can

download from (Version 3.22, December 2016)

https://www.csie.ntu.edu.tw/~cjlin/libsvm/#download

Then extract the package to BioSeq-Analysis-Res as a folder named libsvm. After

un-zip the downloaded package, make sure that the “libsvm.dll” is available in the

directory “..\libsvm\windows”, and then put the file “__init__.py” and “checkdata.py”

which is in the directory “..\ supplement” into the folder“ ..\libsvm ”. Next, put the

“__init__.py” and “plotroc.py” which is in the “.. \ supplement” into the directory

“..\libsvm\python”.

The FlexCRFs(6)is also needed for BioSeq-Analysis-Res, so you can download it

from:

http://flexcrfs.sourceforge.net/download.html.

Then extract the package to BioSeq-Analysis-Res as a folder named FlexCRFs-0.3,

and you need makefile for FlexCRFs-0.3,

For more details you can see the flexcrf-manual in \FlexCRFs-0.3\docs\.

http://bliulab.net/BioSeq-Analysis2.0/download
https://www.python.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/#download
http://flexcrfs.sourceforge.net/download.html

3

Then, the tool gnuplot (7) is need, which you can download from (Version4.6.5):

https://sourceforge.net/projects/gnuplot/files/gnuplot/4.6.5/gp465-win32.zip/download

After installed the gnuplot, the Python package Numpy (8), SciPy (9), and matplotlib

(10) should be downloaded from here: http://www.lfd.uci.edu/~gohlke/pythonlibs/, or

use the following command to install :

> pip install numpy-<version>+mkl-cp<ver-spec>-cp<ver-spec>m-<cpu-build>.whl

> pip install matplotlib-<version>-cp<ver-spec>-cp<ver-spec>m-<cpu-build>.whl

> pip install matplotlib-<version>-cp<ver-spec>-cp<ver-spec>m-<cpu-build>.whl

The Python package scikit-learn (11) should be downloaded and installed from:

http://scikit-learn.org/dev/install.html, or use the following commands if Internet is

accessible:

> pip install scikit-learn

The Python package imbalanced-learn (12) can be installed by using this command

line:

> pip install -U imbalanced-learn

The Python package pandas (13) can be installed by using this command line:

> pip install pandas

For Linux

For Linux operating system, the libsvm and the flexcrfs should be configured as

Windows firstly.

Extract the package to BioSeq-Analysis-Res as a folder named libsvm, then put the

file “__init__.py” and “checkdata.py” which is in the directory “..\ supplement” into

the folder“ ..\libsvm ”. Next, put the “__init__.py” and “plotroc.py” which is in the “..

\ supplement” into the directory “..\libsvm\python”.

Navigate to “~/usr/BioSeq-Analysis2.0/ BioSeq-Analysis-Res/libsvm” directory, and

type the command:

> make

After executing successfully, then navigate to “~/usr/BioSeq-Analysis2.0/

BioSeq-Analysis-Res /libsvm/python” directory, and type the command:

> make

The FlexCRFs is also needed for BioSeq-Analysis-Res, so you can download it from:

http://flexcrfs.sourceforge.net/download.html.

Then extract the package to BioSeq-Analysis-Res as a folder named FlexCRFs, and

you need makefile for FlexCRFs,

Compile (go to FlexCRFs directory):

> make clean (remove any previous output)

> make all (compile FlexCRFs)

Install (you must login the system under the “root” privilege):

> make install (install FlexCRFs)

> make uninstall (uninstall FlexCRFs)

http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://scikit-learn.org/dev/install.html
http://flexcrfs.sourceforge.net/download.html

4

Given the root privilege

> sudo chmod –R 777 FlexCrs/

For more details you can see the flexcrf-manual in /FlexCRFs/docs.

If gnuplot has not been installed, use the following command lines to install gnuplot:

> sudo apt-get install gnuplot

Then, if your linux doesn’t have scikit-learn, numpy, scipy, matplotlib and pandas,

you should use the commods as follows:

> sudo apt-get install scikit-learn

> sudo apt-get install numpy

> sudo apt-get install scipy

> sudo apt-get install matplotlib

> sudo apt-get install pandas

Not Necessary Software

The predicted secondary structure features are generated by software PSIPRED (14)

(15), which can be downloaded from

http://bioinfadmin.cs.ucl.ac.uk/downloads/psipred/.

The solvent accessible surface area features is generated by SPIDER2 (16,17), which

can be downloaded from

http://sparks-lab.org/pmwiki/download/index.php?Download=yueyang/SPIDER2_loc

al.tgz

The sequence conservation score features are generated by the package rate4site (18)

(19), which can be installed by the following command:

> sudo apt-get install rate4site

Now, BioSeq-Analysis2.0 is ready to use.

1.3 Function description

1.3.1 Directory structure

The main directory contains several Python files and folders. “pp.py”, “ei.py”,

“ssc_res.py”, “rc.py”, and “feature.py” are five executive Python scripts used for

generating feature vectors based on the input sequence files and the selected feature

extraction methods. “train.py” and “predict.py” are two executive scripts used for doing

the analysis. “analysiss.py” is an executive Python scripts used for achieving the

one-stop function. “ensemble.py” is used for ensemble learning based on the models

generated by “train.py” or “analysiss.py”. “optimization.py” is used for evaluating the

performance of all the predictors generated by BioSeq-Analysis-Res so as to help the

users to find the best predictor for a specific biological sequence analysis task. The details

of their functions will be introduced in the following sections. “const.py” contains the

constants used in the scripts. “util.py” provides the useful functions used in the scripts.

“rf_method.py” contains the train methods of random forest. “rf_predict.py” contains

the predict methods of random forest. In “data” folder, there are four subfolders:

“example” folder contains the dataset files used in the example; “final_results” folder is

used for storing the generated model file while the “gen_files” folder is used for storing

the generated data files in the parameter selection process. The other files in the “data”

folder are used for feature extraction methods. Modifications of these files are not

suggested. “docs” folder contains the related documents of BioSeq-Analysis-Res.

“libsvm” folder contains the LIBSVM package. The tool for drawing ROC curve is in

the “gnuplot” folder. “psiblast” folder contains the tools used for generating frequency

profiles of protein sequences. To be noticed, the folder “libsvm”, “gnuplot”, “psiblast”,

http://bioinfadmin.cs.ucl.ac.uk/downloads/psipred/
http://sparks-lab.org/pmwiki/download/index.php?Download=yueyang/SPIDER2_local.tgz
http://sparks-lab.org/pmwiki/download/index.php?Download=yueyang/SPIDER2_local.tgz

5

you need download the software and configured by yourself.

The main module of the BioSeq-Analysis2.0 for residue-level analysis

1.3.2 Feature extraction

Scripts

“pp.py”, “rc.py”, “ssc.py”, “ei.py”and “feature.py” There are six executive Python

scripts used for generating feature vectors based on the input sequence files and the

selected feature extraction methods.

The “rc.py” is used for calculating the modes in the sequence-based category and

position-based category.The “pp.py” is used for calculating the modes in physicochemical

property category. The “ei.py” is used for calculating the modes in the category

profile-based. The “ssc.py” is used for calculating the modes in ml-based features

category and predict rna secondary structure. The “feature.py” is used for calculating

multiple modes in the four categories and achieving linear splicing for the feature

vectors.

Input and output

The input file for “pp.py”, “rc.py”, “ssc.py”, “ei.py” and “feature.py” should be a

sequence file and a label file. The sequence file should be in a valid FASTA format that

consists of a single initial line beginning with a greater-than symbol (“>”) in the first

column, followed by lines of sequence data. The label file should be in a valid FASTA

format that consists of a single initial line beginning with a greater-than symbol (“>”) in

the first column, followed by lines of label data.

The words right after the “>” symbol in the single initial line are optional and only used

for the purpose of identification and description.

For example, a valid FASTA format as follows:

Sequence Input:

>example

gacCagcttttaaaccgactccgtgctactgacgacca

Label Input:

>example

1 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0

The output file formats support three choices that are suitable for downstream

computational analyses, such as machine learning. The first and the default choice is the

tab format. In this format, all data is separated by TABs. The second one is the

LIBSVM’s sparse data format. For this format, each line contains an instance and is

ended by a '\n' character, like <label> <index1>:<value1> <index2>:<value2> The

<label> is a category label of the residue. The pair <index>:<value> gives a feature

6

(attribute) value: <index> is an integer starting from 1 and <value> is a real number. The

third output format is the csv format. This format is similar to the tab format. The only

difference is the separation characters between data are commas.

1.3.3 Classifier construction

The classifier construction part includes five main scripts: “train.py”, “predict.py”,

“analysis.py”, and “optimization.py”.

train.py

Basic functions

The “train.py” is used for training predictors and evaluating their performance based on

the input benchmark datasets. Both binary classification and multiclass classification are

supported. There are three main processes of “train.py”, including parameter selection,

model training and cross validation. In the parameter selection process, the parameters

of machine learning algorithm, SVM or RF are optimized on the validation sets. In this

process, the multiprocessing technique is employed to significantly reduce the

computational cost. In the model training process, SVM, RF, CRF is employed to train

the prediction models. Finally, in the cross validation process, the performance of the

constructed predictors is evaluated by k-fold cross-validation, jackknife or independent

dataset test which can be selected by users. For more details of these three processes,

please refer to the “Methods description” section.

Input and output

The input files of “train.py” are at least two files of feature vectors in LIBSVM format

or CSV format generated by the feature extraction methods in“pp.py”, “position.py”,

“profile_res.py”, “mlss.py”, “seq.py” and “feature.py”. Two files need to be input, one is

the sequence file, another is the label files. For binary classification problem, there are

must two kind labels in the label files.For multiclass classification, at least three kind

labels are needed. The output file is the trained SVM model or trained Random Forest

model listing the parameters used in the training process and the log information, and

the CRF method only can use through the analysiss.py, and the details you can see the

analysiss.py. for example:

c,128,g,0.5,b,0,bi_or_multi,0

svm_type c_svc

kernel_type rbf

gamma 0.5

nr_class 2

total_sv 2871

rho 33.5904

label 1 -1

nr_sv 1441 1430

SV

128 1:0.00108139 2:0.00108139 3:0.00108139 ……

……

predict.py

Basic functions

The “predict.py” predicts the unseen samples independent from the benchmark dataset

based on the trained model generated by using “train.py”. For binary classification, the

performance of the constructed predictors is evaluated by five common performance

measures, and the corresponding ROC curves can also be generated. For multiclass

classification, only one measure is calculated. For more information of these functions,

please refer to the “Methods description” section.

7

Input and output

The input file of “predict.py” is an independent file of feature vectors in LIBSVM format

or CSV format generated by feature extraction methods. If the label information of the

samples is available, the performance measures of the predictors will be calculated based

on the predicted labels and the input real labels, otherwise, the performance will not be

evaluated. One label should be listed in each line in the label file, for example:

1

1

1

0

0

0

……

The output of “predict.py” is a file containing the predicted labels in the same format as

the input label file.

analysis.py

Basic functions

The “analysiss.py” is the core executable file for the BioSeq-Analysis-Res standalone

package. Its main role is training predictors and evaluating their performance based on

the input benchmark datasets, and achieving parameter optimization at the same time.

Both binary classification and multiclass classification are supported. There are five

main processes of “analysiss.py”, including parameter selection, combination of the

features, model training, cross validation and prediction on the independent dataset.

In process of the parameter selection, the parameters of feature extraction and machine

learning are optimized on the validation sets. In this process, the multiprocessing

technique is employed to significantly reduce the computational cost. In the process of

combination of the features, the feature vectors will be achieved linear splicing. In the

process of model training, the LIBSVM package, “rf_method.py” or FlexCRFs-0.3

package is employed to train the prediction models. Then, in the process of cross

validation, the performance of the constructed predictors is evaluated by k-fold

cross-validation, jackknife or independent dataset test which can be selected by users.

Finally, in the process of prediction on the independent dataset, the unseen samples

independent from the benchmark dataset will be predicted based on the trained model

generated before. For binary classification, the performance of the constructed predictors

is evaluated by five common performance measures, and the corresponding ROC curves

can also be generated.

For multiclass classification, only one measure is calculated. For more details of these

three processes, please refer to the “Methods description” section.

Input and output

The input files of “analysiss.py” are two files one file is biological sequence, another file

is label sequence, which are in FASTA format. For binary classification problem, there

are must two kind labels in the label files. For multiclass classification, at least three

kind labels are needed. The output file contains the trained SVM model , Random Forest

model or the CRF model listing the parameters used in the training process and the log

information, for example:

c,128,g,0.5,b,0,bi_or_multi,0

svm_type c_svc

kernel_type rbf

gamma 0.5

8

nr_class 2

total_sv 2871

rho 33.5904

label 1 0

nr_sv 1441 1430

SV

128 1:0.00108139 2:0.00108139 3:0.00108139 ……

……

When there is an independent dataset, if the label information of the samples is available,

the performance measures of the predictors will be calculated based on the predicted

labels and the input real labels, otherwise, the performance will not be evaluated. One

label should be listed in each line in the label file, for example:

1

1

1

0

0

0

……

If there has independent dataset, the output of “analysiss.py” will have a file containing

the predicted labels in the same format as the input label file.

1.4 Commands

“rc.py” usage

Command line arguments for “rc.py”:

Required descript

ion inputfiles The input sequence file in FASTA format.

{DNA, RNA, Protein} The sequence type.

method The method name.

-labels The input label file in FASTA format.

Optional description

-h, --help Show this help message and exit.

-out The output files used for storing results. The number

of output files should be the same as that of input files.

-f {tab, svm, csv} The output format (default = tab).

tab -- Simple format, delimited by TAB.

svm -- The LIBSVM training data format.

csv -- The format that can be loaded into a spreadsheet

program.

-sp { under, none} Balance the unbalanced data, default value is none.

Over is oversampling technique. Under is under

sampling technique.

9

-fragment If you use the fragment method, you need set the

value ‘1’, or set ‘0’, default is 0.

 -size The size of sliding window. If you use the fragment

method，the size don’t need set.

“pp.py” usage

Command line arguments for “pp.py”:

Required descript

ion inputfiles The input sequence file in FASTA format.

{DNA, RNA, Protein} The sequence type.

method The method name.

-labels The input label file in FASTA format.

Optional description

-h, --help Show this help message and exit.

-out The output files used for storing results. The number

of output files should be the same as that of input files.

-f {tab, svm, csv} The output format (default = tab).

tab -- Simple format, delimited by TAB.

svm -- The LIBSVM training data format.

csv -- The format that can be loaded into a spreadsheet

program.

-sp { under, none} Balance the unbalanced data, default value is none.

Over is oversampling technique. Under is under

sampling technique.

-fragment If you use the fragment method, you should set the

value ‘1’, or set ‘0’, default is 0.

-size The size of sliding window. If you use the fragment

method，the size don’t need set.

“ei.py” usage

Command line arguments for “ei.py”:

Required descript

ion inputfiles The input sequence file in FASTA format.

{DNA, RNA, Protein} The sequence type.

method The method name.

-labels The input label file in FASTA format.

Optional description

10

-h, --help Show this help message and exit.

-out The output files used for storing results. The number

of output files should be the same as that of input files.

-f {tab, svm, csv} The output format (default = tab).

tab -- Simple format, delimited by TAB.

svm -- The LIBSVM training data format.

csv -- The format that can be loaded into a spreadsheet

program.

-sp { under, none} Balance the unbalanced data, default value is none.

Over is oversampling technique. Under is under

sampling technique.

-fragment If you use the fragment method, you should set the

value ‘1’, or set ‘0’, default is 0.

-size The size of sliding window. If you use the fragment

method，the size don’t need set.

“ssc.py” usage

Command line arguments for “ssc.py”:

Required descript

ion inputfiles The input sequence file in FASTA format.

{DNA, RNA, Protein} The sequence type.

method The method name.

-labels The input label file in FASTA format.

Optional description

-h, --help Show this help message and exit.

-out The output files used for storing results. The number

of output files should be the same as that of input files.

-f {tab, svm, csv} The output format (default = tab).

tab -- Simple format, delimited by TAB.

svm -- The LIBSVM training data format.

csv -- The format that can be loaded into a spreadsheet

program.

-sp { under, none} Balance the unbalanced data, default value is none.

Over is oversampling technique. Under is under

sampling technique.

-fragment If you use the fragment method, you should set the

value ‘1’, or set ‘0’. default is 0.

-size The size of sliding window. If you use the fragment

method，the size don’t need set.

11

“feature.py” usage

Command line arguments for “feature.py”:

Required description

inputfiles The input sequence file in FASTA format.

{DNA, RNA, Protein} The sequence type.

method You can input several methods. The vector

of each method implements linear

merging. Up to 3 methods.

 -labels The input label file in FASTA format.

Optional description

-h, --help Show this help message and exit.

-out The output files used for storing results. The number

of output files should be the same as that of input files.

-cpu The maximum number of CPU cores used for

multiprocessing in generating frequency profile.

(default=1).For Top-n-gram, PDT-Profile, DT,

AC-PSSM, CC-PSSM, ACC-PSSM, PDT methods.

-f {tab, svm, csv} The output format (default = tab).

tab -- Simple format, delimited by TAB. svm --

The LIBSVM training data format.

csv -- The format that can be loaded into a spreadsheet

program.

-sp {under, none} Balance the unbalanced data, default value is none.

Over is oversampling technique. Under is under

sampling technique.

-bp {1, 0} The option of batch processing. 1 is batch processing,

0 is not. Default is 0.

-fragment If you use the fragment method, you should set the

value ‘1’, or set ‘0’ .

-size The size of sliding window. If you use the fragment

method，the size don’t need set.

“train.py” usage

Command line arguments for “train.py”:

required description

files The input files.

If the algorithm is set as SVM, the format of files should be

LIBSVM format; if the algorithm is set as rf, the format of files

should be csv format.

For binary classification, two files needed.

For multiclass classification, at least three files needed.

-m M The name of the trained SVM model. Only for svm and

rf.

 -label_dict Record each residue sequence’s label distribution.

12

Optional description

-h, --help Show this help message and exit.

-p {ACC,MCC,AUC} The performance metric used for parameter selection.

Default value is “ACC”.

-v V The cross validation mode.

n: (an integer larger than 0) n-fold cross validation.

j: (character “j”) jackknife cross validation.

-ind The independent test dataset.

-ml {svm, rf} The method of machine learning. svm is support vector

machine; rf is random forest. (default is svm)

-opt If the algorithm is set as svm:

0: small range set c from -5 to 10, step is 2; g from -10

to 5, step is 2.

1: large range set c from -5 to 10, step is 1; g from -10

to 5, step is 1.

If the algorithm is set as rf:

0: small range set number of trees from 100 to 600, step

is 200.

1: large range set number of trees from 100 to 600, step

is 100.

If the algorithm is set as oet_knn:

0: small range set neighbors from 1 to 30, step is 2.

1: large range set neighbors from 1 to 30, step is 1.

Default value is 0.

-b {0,1} Whether to train a SVC or SVR model for

probability estimates, 0 or 1. Default value is

0.

 -cpu The maximum number of CPU cores used for

multiprocessing during parameter selection process.

Default value is 1.

-bp {1, 0} The option of batch processing. 1 is run batch processing, 0 is

not. Default is 0.

“predict.py” usage

Command line arguments for “predict.py”:

required description

inputfiles The input sequence files in LIBSVM format.

-m M The name of the trained SVM model.

optional description

13

-h, --help Show this help message and exit.

-labels LABELS The real label file. Optional.

-ml {svm, rf } The method of machine learning. rf is

Random Forest. (default is svm)
-o O The output file name listing the

predicted labels. The default name is

“output_labels.txt”.

“analysis.py” usage

Command line arguments for “analysiss.py”:

Required description

inputfiles The input sequence file in FASTA format.

{DNA, RNA, Protein} The sequence type.

-model The name of the trained model.

-method The method names. You can input several

methods. The vector of each method

implements linear merging. Up to 3 methods.

-labels The input label file in FASTA format.

 Optional description

-h, --help Show this help message and exit.

-b{0, 1} Whether to train a SVC or SVR model for probability

estimates, 0 or 1.(default=0). For svm method.
-v The cross validation mode.

n: (an integer larger than 0) n-fold cross validation.

j: (character “j”) jackknife cross validation.

i: (character 'i') independent test set method. -opt Set the range of parameters to be optimized.

0: For svm, small range set c from -5 to 10, step is 2; g

from -10 to 5, step is 2. For random forest, trees from

100 to 600, step is 200.

1: large range set c from -5 to 10, step is 1; g from -10

to 5, step is 1. For random forest, trees from 100 to

600, step is 100. (default=0).

-p {ACC,MCC,AUC} The performance metric used for parameter selection.

Default value is “ACC”.

-ind The independent test dataset.

-out The output files used for storing results. The number

of output files should be the same as that of input files.

-cpu The maximum number of CPU cores used for

multiprocessing in generating frequency profile.

(default=1).For Top-n-gram, PDT-Profile, DT,

AC-PSSM, CC-PSSM, ACC-PSSM, PDT methods

and the number of CPU cores used for

multiprocessing during parameter selection process.

(default=1).

14

-ml {svm, rf, crf} The method of machine learning. rf is Random

Forest. Oet_knn is Optimized Evidence-Theoretic

K-Nearest Neighbor. Cda is covariance discriminant

algorithm (default is svm)

-rl The real label file. Optional.

-sp {under, none} Balance the unbalanced data, default value is none.

Over is oversampling technique. Under is under

sampling technique.

-bp {1, 0} The option of batch processing. 1 is batch processing,

0 is not. Default is 0.

-fragment If you use the fragment method, you should set the

value ‘1’, or set ‘0’.

-size The size of sliding window. If you use the fragment

method，the size don’t need set.

 “optimization.py” usage

Command line arguments for “optimization.py”:

Required description

inputfiles The input sequence file in FASTA format.

{DNA, RNA, Protein} The sequence type.

-model The name of the trained model.

-labels The input sequence file in FASTA format.

Optional description

-h, --help Show this help message and exit.

-v The cross validation mode.

n: (an integer larger than 0) n-fold cross validation.

j: (character “j”) jackknife cross validation.

i: (character 'i') independent test set method. -opt Set the range of parameters to be optimized.

0: For svm, small range set c from -5 to 10, step is 2; g

from -10 to 5, step is 2. For random forest, trees from

100 to 600, step is 200.

1: large range set c from -5 to 10, step is 1; g from -10

to 5, step is 1. For random forest, trees from 100 to

600, step is 100. (default=0).

-out The output files used for storing results. The number

of output files should be the same as that of input files.

-cpu The maximum number of CPU cores used for

multiprocessing in generating frequency profile.

(default=1).

-ml { svm, rf } The method of machine learning. rf is Random

Forest. (default is svm)

15

-sp { under, none} Balance the unbalanced data, default value is none.

Over is oversampling technique. Under is under

sampling technique.

-bp {1, 0} The option of batch processing. 1 is batch processing,

0 is not. Default is 0.

-fragment If you use the fragment method, you should set the

value ‘1’, or set ‘0’. Default 0.

-size The size of sliding window. If you use the fragment

method，the size don’t need set.

Example

Four examples of using BioSeq-Analysis-Res to construct machine learning predictor

for solving a specific task in bioinformatics are given.

Example for residue level of DNA sequence.

Reconstructing the predictor iEnhancer-2L for identify enhancers based on the

benchmark dataset(20) by using BioSeq-Analysis-Res.

The benchmark dataset contains 1484 positive samples and 1484 negative samples. The

benchmark dataset are available at

http://bliulab.net/iEnhancer-EL/data/

In this example, the files “dna_frag_seq.txt” and “dna_frag_label.txt” contain the

sequence dataset and label dataset of the benchmark dataset, respectively. All these two

files are available in the “/data/example” folder.

We can use a command to implement feature extraction and model training, while

implementing optimization parameters.

python analysis.py ./data/example/dna_frag_seq.txt DNA -method One-hot -ml svm

-labels ./data/example/dna_frag_label.txt -fragment 1 -model dna.model -opt 0 -v 5

-cpu 5

The output informations is as follows:

------------ Job is doing, please wait ------------

Processing...

Parameters selecting of features done!

Combine the features of given methods and train it...

Method TPC is calculating...

The output file(s) can be found here:

/home/First_project/BioSeq-Analysis2.0/BioSeq-Analysis-Res/data/final_results/

dna_frag_seq /Category~1_svm.txt

 /home/First_project/BioSeq-Analysis2.0/BioSeq-Analysis-Res/data/final_results/

dna_frag_seq /Category~0_svm.txt

Processing on the best parameters...

Parameter selection is in processing...

Iteration c = -5 g = -1 finished.

Iteration c = -5 g = -4 finished.

Iteration c = -5 g = -10 finished.

http://bioinformatics.hitsz.edu.cn/iEnhancer-EL/data/

16

Iteration c = -5 g = -7 finished.

Iteration c = -5 g = 2 finished.

Iteration c = -5 g = 5 finished.

Iteration c = -2 g = -10 finished.

Iteration c = -2 g = -7 finished.

Iteration c = -2 g = -4 finished.

Iteration c = -2 g = 5 finished.

Iteration c = -2 g = -1 finished.

Iteration c = -2 g = 2 finished.

Iteration c = 1 g = -10 finished.

Iteration c = 1 g = -7 finished.

Iteration c = 1 g = -4 finished.

Iteration c = 1 g = -1 finished.

Iteration c = 1 g = 2 finished.

Iteration c = 4 g = -10 finished.

Iteration c = 1 g = 5 finished.

Iteration c = 4 g = -7 finished.

Iteration c = 4 g = -4 finished.

Iteration c = 4 g = -1 finished.

Iteration c = 4 g = 2 finished.

Iteration c = 4 g = 5 finished.

Iteration c = 7 g = -10 finished.

Iteration c = 7 g = -7 finished.

Iteration c = 7 g = -4 finished.

Iteration c = 7 g = -1 finished.

Iteration c = 7 g = 2 finished.

Iteration c = 7 g = 5 finished.

Iteration c = 10 g = -10 finished.

Iteration c = 10 g = -7 finished.

Iteration c = 10 g = -4 finished.

Iteration c = 10 g = -1 finished.

Iteration c = 10 g = 2 finished.

Iteration c = 10 g = 5 finished.

The time cost for parameter selection is 218.26s

Parameter selection completed.

The optimal parameters for the dataset are: C = 1024 gamma = 0.0009765625

The cross validation results are as follows:

ACC = 0.7369

MCC = 0.4783

AUC = 0.8126

Sn = 0.6716

Sp = 0.8020

The ROC curve has been saved. You can check it here:

./data/ final_results/cv_roc.png

Model training completed.

The model has been saved. You can check it here:

./data/ final_results/dna .model

Done.

Used time: 277.22s

Total used time: 289.60s

17

The generated ROC curve is shown in Fig. 1.

Fig .1. The ROC curve of cross validation

As shown in this example, the iEhancer-2L/iEnhancer-EL can be easily constructed based

on the benchmark dataset by using the script “analysis.py”.

Example for residue level of RNA sequence.

N6-Methyladenosine (m6A) is an RNA methylation modification at the nitrogen-6

position of the adenosine base(21). Reconstructing the predictor for identification m6A

precursors based on the benchmark dataset (22) by using BioSeq-Analysis-Res.

The benchmark dataset contains 1452 positive samples and 1348 negative samples.

All these two files are available in the “/data/example” folder.

We can use a command to implement feature extraction and model training, while

implementing optimization parameters.

python analysis.py ./data/example/rna_frag_seq.txt RNA -method DPC -ml rf

-labels ./data/example/rna_frag_label.txt -fragment 1 -model rna.model -opt 0 -v 5

-cpu 5

The output informations is as follows:

------------ Job is doing, please wait ------------

Processing...

Parameters selecting of features done!

Combine the features of given methods and train it...

Method DPC is calculating...

The output file(s) can be found here:

/home/First_project/BioSeq-Analysis2.0/BioSeq-Analysis-Res/data/ final_results/

rna_frag_seq /Category~0_csv.txt

/home/First_project/BioSeq-Analysis2.0/BioSeq-Analysis-Res/data/ final_results/

rna_frag_seq /Category~1_csv.txt

Processing...

Parameter selection is in processing...

Trees are 100...

Trees are 300...

18

Trees are 500...

The time cost for parameter selection is 74.29s

Parameter selection completed.

The optimal parameter for the dataset is: Parameter = 500

Model training is in processing...

The cross validation results are as follows:

ACC = 0.6868

MCC = 0.3728

AUC = 0.7387

Sn = 0.7073

Sp = 0.6647

The ROC curve has been saved. You can check it here:

./data/ final_results/cv_roc.png

Model training completed.

The model has been saved. You can check it here:

./data/ final_results/ rna .model

Total used time: 6186.99s

The generated ROC curve is shown in Fig. 2.

Fig .2. The ROC curve of cross validation

As shown in this example, the m6A identification predictors can be easily constructed

based on the benchmark dataset by using the script “analysis.py”.

Example of protein

Reconstructing the predictor for Protein disordered region identification based on the

benchmark dataset(23), by using BioSeq-Analysis2.0.

The benchmark dataset contains 5442 positive samples and 10232 negative samples..

In this example, the files “protein_seq.txt” and “protein_label.txt” contain the sequence

dataset and label dataset of the benchmark dataset, respectively. T All these files are

available in the “/data/example” folder.

We can use a command to implement feature extraction and model training, while

implementing optimization parameters.

19

python analysis.py ./data/example/ protein_seq.txt Protein

-labels ./data/example/protein_label -method One-hot-6bit -ml crf -model

protein.model -size 13 -opt 0 -v 5 -cpu 5

The output informations is as follows:

------------ Job is doing, please wait ------------

there are 2 kinds

Processing...

Parameters selecting of features done!

Combine the features of given methods and train it...

Method PSFM is calculating...

The output file(s) can be found here:

/home/First_project/BioSeq-Analysis2.0/BioSeq-Analysis-Res/data/final_results/protein

_seq/Category~1_svm.txt

/home/First_project/BioSeq-Analysis2.0/BioSeq-Analysis-Res/data/final_results/protein

_seq/Category~0_svm.txt

Processing on the best parameters...

This is model: ./ data/final_results/protein_seq/crf_app/Fold1/model.txt

This is model: ./ data/final_results/protein_seq/crf_app/Fold2/model.txt This is

model: ./ data/final_results/protein_seq/crf_app/Fold3/model.txt

This is model: ./ data/final_results/protein_seq/crf_app/Fold4/model.txt This is

model: ./ data/final_results/protein_seq/crf_app/Fold5/model.txt

ACC = 0.7246

MCC = 0.3640

AUC = 0.7472

Sn = 0.4875

Sp = 0.8507

The ROC curve has been saved. You can check it here:

/home/First_project/BioSeq-Analysis2.0/BioSeq-Analysis-Res/data/final_results/

protein_seq /cv_roc.png

Done.

The generated ROC curve is shown in Fig. 3.

Fig .3. The ROC curve of cross validation

20

As shown in this example, the predictor can be easily constructed based on the

benchmark dataset by using the script “analysis.py”.

1.5 Methods description

1.5.1 Feature extraction

The BioSeq-Analysis-Res stand-alone package is able to generate totally 26 different

modes of pseudo components for Deoxyribonucleic acid, Ribonucleic acid, and Amino

acid, including 7 modes for Deoxyribonucleic acid (Table 1-a), 6 modes for Ribonucleic

acid (Table 2-a), and 14 modes for Amino acid (Table 3-a). The detailed information and

reference of the 26 methods will be introduced in BioSeq-Analysis-Res description

document which can be downloaded from here:

http://bliulab.net/BioSeq-Analysis2.0/doc/.

For many biological residue analysis tasks, the training sets are imbalanced. As a result, a

predictor trained by a skewed dataset would inevitably lead to a bias consequence (24).

The undersampling is widely used to minimize this bias consequence. For undersampling,

some samples are randomly removed from the large class to make the number of samples

in different classes the same. In BioSeq-Analysis2.0, the SMOTE algorithm (25) were

employed to generate the hypothetical samples for this purpose.

1.5.2 Parameter selection

In LIBSVM there are two parameters c and g which can determine the performance of

the predictor. In Random Forest there is one parameter t which can determine the

performance of the predictor. BioSeq-Analysis-Res is able to automatically optimize

these parameters based on the best performance on the validation set. Users can choose a

range of the parameters for optimizing. For more information of the input format, please

refer to “Commands” section.

To improve the efficiency of this procedure, multiprocessing technique is applied, which

significantly reduces the computational cost. One of the three performance measures,

including Accuracy (ACC), Mathew’s Correlation Coefficient (MCC) and Area Under

roc Curve (AUC) can be used as the golden standard to optimize the parameters.

1.5.3 Predictor construction

In the model training process, this model is trained based on LIBSVM with RBF kernel,

Random Forest, and a sequence labeling model—CRF.

1.5.4 Cross validation

BioSeq-Analysis-Res provides three types of cross validation options, including k-fold

cross validation, jackknife (leave-one-out cross validation) and independent dataset test,

which can be chosen by the argument “-v”. Please refer to “Commands” section for

more details.

For binary classification, the performance of the predictor is measured by five common

performance measures, including the accuracy (ACC), Mathew’s Correlation Coefficient

(MCC), Area Under roc Curve (AUC), sensitivity (Sn), and specificity (Sp).

Furthermore, the ROC (Receiver Operating Characteristic) (26) curve will also be

generated and saved in a PNG file.

For multiclass classification, only the performance measure of ACC is calculated since

the other measures are not suitable for multiclass classification.

Besides, if the parameter “-b” of libsvm is set or using the random forest, the prediction

probability values will be output and save as a file, thus users can do further analysis

with these data.

1.5.5 Residue prediction

http://bliulab.net/BioSeq-Analysis2.0/doc/

21

The “predict.py” is used to predict the unseen samples based on the model trained by

using “train.py”. The performance of the predictors can be further evaluated on the

independent datasets. If the label information of the independent dataset is not available,

the performance of the predictor will not be evaluated, and only the predicted labels are

given. Otherwise, this script will output the predicted labels. For binary classification,

the five performance measures (ACC, MCC, AUC, Sn, and Sp) will be calculated along

with the corresponding ROC curve saved as a PNG file; for multiclass classification,

only the performance measure ACC will be calculated.

2. BioSeq-Analysis-Seq for sequence-level

analysis

2.1 Introduction

The platform BioSeq-Analysis2.0 stand-alone package has two parts. For this section,

we will introduce the sequence-level analysis tool, for convenience, we call it

BioSeq-Analysis-Seq. The BioSeq-Analysis-Seq is a package for DNA, RNA and

protein sequence analysis based on machine learning approaches, which can

automatically implement the main procedures for constructing a predictor based on

machine learning techniques, including feature extraction, parameter optimization,

model training and performance evaluation. In the feature extraction step, totally 56

modes were provided for users, of which 20 for DNA sequences, 14 for RNA

sequences and 22 for protein sequences. In the predictor construction step, four

machine learning algorithms are available: support vector machine (SVM) (1), random

forest (RF) (2,3), Optimized Evidence-Theoretic K-Nearest Neighbor (OET-KNN) (27),

and covariance discriminant algorithm (28). In order to handle large dataset, the

stand-alone package of BioSeq-Analysis-Seq is given. More details will be introduced

in the following parts of the manual.

2.2 Installation

The BioSeq-Analysis-Seq package can be run on Linux (64-bit) and Windows (64-bit)

operating system. The full package and documents of BioSeq-Analysis-Seq are

available at http://bliulab.net/BioSeq-Analysis2.0/download.

For Windows

The Windows 7 or later versions are supported.

Before using BioSeq-Analysis-Seq, the Python software should be first installed and

configured. Python 2.7 64-bit is recommended, which can be downloaded from

https://www.python.org.

The next step is the installation and configuration of LIBSVM (5), which you can

download from (Version 3.22, December 2016)

https://www.csie.ntu.edu.tw/~cjlin/libsvm/#download

Then extract the package to BioSeq-Analysis-Seq as a folder named libsvm. After

un-zip the downloaded package, make sure that the “libsvm.dll” is available in the

directory “..\libsvm\windows”, and then put the file “__init__.py” and “checkdata.py”

which is in the directory “..\ supplement” into the folder“ ..\libsvm ”. Next, put the

http://bliulab.net/BioSeq-Analysis2.0/download
https://www.python.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/#download

22

“__init__.py” and “plotroc.py” which is in the “.. \ supplement” into the directory

“..\libsvm\python”.

Then, the tool gnuplot (7) is need, which you can download from (Version4.6.5):

https://sourceforge.net/projects/gnuplot/files/gnuplot/4.6.5/gp465-win32.zip/download

After installed the gnuplot, the Python package Numpy (8), SciPy (9), and matplotlib

(10) should be downloaded from here: http://www.lfd.uci.edu/~gohlke/pythonlibs/, or

use the following command to install :

> pip install numpy-<version>+mkl-cp<ver-spec>-cp<ver-spec>m-<cpu-build>.whl

> pip install matplotlib-<version>-cp<ver-spec>-cp<ver-spec>m-<cpu-build>.whl

> pip install matplotlib-<version>-cp<ver-spec>-cp<ver-spec>m-<cpu-build>.whl

The Python package scikit-learn (11) should be downloaded and installed from:

http://scikit-learn.org/dev/install.html, or use the following commands if Internet is

accessible:

> pip install scikit-learn

The Python package imbalanced-learn (12) can be installed by using this command

line:

> pip install -U imbalanced-learn

The Python package pandas (13) can be installed by using this command line:

> pip install pandas

For Linux

For Linux operating system, the libsvm should be configured as Windows firstly.

Extract the package to BioSeq-Analysis-Seq as a folder named libsvm, then put the file

“__init__.py” and “checkdata.py” which is in the directory “..\ supplement” into the

folder“ ..\libsvm ”. Next, put the “__init__.py” and “plotroc.py” which is in the “.. \

supplement” into the directory “..\libsvm\python”.

Navigate to “~/usr/BioSeq-Analysis2.0/BioSeq-Analysis-Seq/libsvm” directory, and

type the command:

> make

After executing successfully, then navigate to “~/usr/

BioSeq-Analysis2.0/BioSeq-Analysis-Seq/libsvm/python” directory, and type the

command:

> make

If gnuplot has not been installed, use the following command lines to install gnuplot:

> sudo apt-get install gnuplot

Then, if your linux doesn’t have scikit-learn,

numpy, scipy, matplotlib and pandas, you should use the commods as follows:

> sudo apt-get install scikit-learn

> sudo apt-get install numpy

> sudo apt-get install scipy

> sudo apt-get install matplotlib

> sudo apt-get install pandas

http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://scikit-learn.org/dev/install.html

23

Not Necessary Software

The predicted secondary structure features are generated by software PSIPRED (14)

(15), which can be downloaded from

http://bioinfadmin.cs.ucl.ac.uk/downloads/psipred/.

The solvent accessible surface area features is generated by SPIDER2 (16,17), which

can be downloaded from

http://sparks-lab.org/pmwiki/download/index.php?Download=yueyang/SPIDER2_loc

al.tgz

The sequence conservation score features are generated by the package rate4site (18)

(19), which can be installed by the following command:

> sudo apt-get install rate4site

Now, BioSeq-Analysis-Seq is ready to use.

2.3 Function description
2.3.1 Directory structure

The main directory contains several Python files and folders. “nac.py”, “acc.py”,

“pse.py”, “sc.py”, “profile.py”, “ps.py” and “feature.py” are seven executive Python

scripts used for generating feature vectors based on the input sequence files and the

selected feature extraction methods. “train.py” and “predict.py” are two executive scripts

used for doing the analysis. “analysiss.py” is an executive Python scripts used for

achieving the one-stop function. “ensemble.py” is used for ensemble learning based on

the models generated by “train.py” or “analysiss.py”. “optimization.py” is used for

evaluating the performance of all the predictors generated by BioSeq-Analysis-Seq so as

to help the users to find the best predictor for a specific biological sequence analysis task.

The details of their functions will be introduced in the following sections. “const.py”

contains the constants used in the scripts. “util.py” provides the useful functions used in

the scripts and “util_sc.py” provides some specific functions used for “sc.py”.

“rf_method.py” contains the train methods of random forest. “rf_predict.py” contains

the predict methods of random forest. “acc_pssm” folder contains the tools used for

ACC-PSSM, AC-PSSM and CC-PSSM methods. “pdt” folder contains the tools used for

PDT and PDT-Profile methods. “docs” folder contains the related documents of

BioSeq-Analysis-Seq. In “data” folder, there are four subfolders: “example” folder

contains the dataset files used in the example; “final_results” folder is used for storing

the generated model file while the “gen_files” folder is used for storing the generated

data files in the parameter selection process. The other files in the “data” folder are used

for feature extraction methods. Modifications of these files are not suggested.

“libsvm” folder contains the LIBSVM package. The tool for drawing ROC curve is in

the “gnuplot” folder. “psiblast” folder contains the tools used for generating frequency

profiles of protein sequences. These three folders are created by the users.

http://bioinfadmin.cs.ucl.ac.uk/downloads/psipred/
http://sparks-lab.org/pmwiki/download/index.php?Download=yueyang/SPIDER2_local.tgz
http://sparks-lab.org/pmwiki/download/index.php?Download=yueyang/SPIDER2_local.tgz

24

The main module of the BioSeq-Analysis2.0 for sequence-level analysis

2.3.2 Feature extraction

Scripts

“nac.py”, “acc.py”, “pse.py”, “sc.py”, “profile.py”, “ps.py” and “feature.py”. There are

seven executive Python scripts used for generating feature vectors based on the input

sequence files and the selected feature extraction methods.

The “nac.py” is used for calculating the modes in the category nucleic acid composition or

amino acid composition; the “acc.py” is used for calculating the modes in autocorrelation

category. The “pse.py” is used for calculating the modes in the category pseudo

nucleotide composition or pseudo amino acid composition. The “sc.py” is used for

calculating the modes in predicted structure composition category. The “profile.py” is

used for calculating the modes in profile-based features category. The “ps.py” is used for

calculating the modes in predicted structure features category. The “feature.py” is used

for calculating multiple modes in the six categories and achieving linear splicing for the

feature vectors.

Input and output

The input file for “nac.py”, “acc.py”, “pse.py”, “profile.py”, “ps.py” and “feature.py”

should be in a valid FASTA format that consists of a single initial line beginning with a

greater-than symbol (“>”) in the first column, followed by lines of sequence data. The

words right after the “>” symbol in the single initial line are optional and only used for the

purpose of identification and description. For “sc.py”, the input file should be in a valid

FASTA format with the secondary structure as follows:

>example

GCAUCCGGGUUGAGGUAGUAGGUUGUAUGGUUUAGAGUUACACCCUGGG

AGUUAACUGUACAACCUUCUAGCUUUCCUUGGAGC

((.((((((..(((.(((.(((((((((((((..((.(..((...))..).))))))))))))))).))).)))..)))))))) (-31.60)

For “feature.py”, the input file should be in a valid FASTA format if the methods used

in “sc.py”, and if the methods used in “nac.py”, “acc.py”, “pse.py”, “profile.py” or

“ps.py”, the input file should be in a valid FASTA format with the secondary structure.

The output file formats support three choices that are suitable for downstream

computational analyses, such as machine learning. The first and the default choice is the

tab format. In this format, all data is separated by TABs. The second one is the

LIBSVM’s sparse data format. For this format, each line contains an instance and is

ended by a '\n' character, like <label> <index1>:<value1> <index2>:<value2> The

<label> is a category label of the sequence. The pair <index>:<value> gives a feature

(attribute) value: <index> is an integer starting from 1 and <value> is a real number. The

third output format is the csv format. This format is similar to the tab format. The only

difference is the separation characters between data are commas.

25

Physicochemical Properties Selection

The Physicochemical Properties Selection file is a text file that contains a list of property

names used for generating the modes in categories: autocorrelation, pseudo nucleotide

composition/ pseudo amino acid composition. For example, if you want to use the “Rise”,

“Tilt” and “Shift” of DNA dinucleotide for calculating, the Physicochemical Properties

Selection file should be written as follows:

Rise

Tilt

Shift

After saving this file as “propChosen.txt” and specifying it using the command “-i

propChosen.txt”, or just “I propChosen.txt”, the above three properties will be used in

calculations. Meanwhile, you can also use the command “-a True” to select all the

built-in physicochemical properties for the corresponding sequence type, which can be

selected by using parameter DNA, RNA or PROTEIN.

The complete lists of physicochemical properties for DNA, RNA and protein sequences

used in the stand-alone program are provided in Table 4-12.

User-defined Physicochemical Properties

In the user-defined physicochemical index files, each index should be represented in

three lines. The first line must start with a greater-than symbol (">") in the first column.

The words right after the ">" symbol in the single initial line are optional and only used

for the purpose of identification and description of the index. The second line lists the

names of the sequence compositions (i.e. amino acids, nucleotides, dinucleotides, or

trinucleotides, etc), which should be sorted in the alphabet order, such as 'A' 'C' ... 'AA'

'AC'. All the elements in this line should be separated by TAB. The corresponding

values of these sequence compositions are listed in the third line, which are separated

by TAB.

For example, if you defined a physicochemical property “user_property”, the user-

defined physicochemical index file should be written as follows:

> user_property

A

0.21

C … AA AC …

0.12 … 0.37

0.15

…

After saving this file as “user_defined.txt” and specifying it using the command “-e

user_defined.txt”, or just “E user_defined.txt”, the properties defined by user will be used

in calculations.

2.3.3 Classifier construction
The classifier construction part includes five main scripts: “train.py”, “predict.py”,

“analysis.py”, “ensemble.py” and “optimization.py”.

train.py

Basic functions

26

The “train.py” is used for training predictors and evaluating their performance based on

the input benchmark datasets. Both binary classification and multiclass classification are

supported. There are three main processes of “train.py”, including parameter selection,

model training and cross validation. In the parameter selection process, the parameters

of machine learning algorithm, SVM or RF are optimized on the validation sets. In this

process, the multiprocessing technique is employed to significantly reduce the

computational cost. In the model training process, SVM or RF is employed to train the

prediction models. Finally, in the cross validation process, the performance of the

constructed predictors is evaluated by k-fold cross-validation, jackknife or independent

dataset test which can be selected by users. For more details of these three processes,

please refer to the “Methods description” section.

Input and output

The input files of “train.py” are at least two files of feature vectors in LIBSVM format

or CSV format generated by the feature extraction methods in “nac.py”, “acc.py”,

“pse.py” , “sc.py” and “feature.py”. For binary classification problem, two files need to

be input, storing the positive samples and the negative samples, respectively. For

multiclass classification, at least three files are needed. The output file is the trained

SVM model or trained Random Forest model listing the parameters used in the training

process and the log information, for example:

c,128,g,0.5,b,0,bi_or_multi,0

svm_type c_svc

kernel_type rbf

gamma 0.5

nr_class 2

total_sv 2871

rho 33.5904

label 1 -1

nr_sv 1441 1430

SV

128 1:0.00108139 2:0.00108139 3:0.00108139 ……

……

predict.py

Basic functions

The “predict.py” predicts the unseen samples independent from the benchmark dataset

based on the trained model generated by using “train.py”. For binary classification, the

performance of the constructed predictors is evaluated by five common performance

measures, and the corresponding ROC curves can also be generated. For multiclass

classification, only one measure is calculated. For more information of these functions,

please refer to the “Methods description” section.

Input and output

The input file of “predict.py” is an independent file of feature vectors in LIBSVM format

or CSV format generated by feature extraction methods. If the label information of the

samples is available, the performance measures of the predictors will be calculated based

on the predicted labels and the input real labels, otherwise, the performance will not be

evaluated. One label should be listed in each line in the label file, for example:

+1

+1

27

+1

-1

-1

-1

……

The output of “predict.py” is a file containing the predicted labels in the same format as

the input label file.

analysis.py

Basic functions

The “analysiss.py” is the core executable file for the BioSeq-Analysis-Seq standalone

package. Its main role is training predictors and evaluating their performance based on

the input benchmark datasets, and achieving parameter optimization at the same time.

Both binary classification and multiclass classification are supported. There are five

main processes of “analysiss.py”, including parameter selection, combination of the

features, model training, cross validation and prediction on the independent dataset.

In process of the parameter selection, the parameters of feature extraction and machine

learning are optimized on the validation sets. In this process, the multiprocessing

technique is employed to significantly reduce the computational cost. In the process of

combination of the features, the feature vectors will be achieved linear splicing. In the

process of model training, the LIBSVM package or “rf_method.py” is employed to train

the prediction models. Then, in the process of cross validation, the performance of the

constructed predictors is evaluated by k-fold cross-validation, jackknife or independent

dataset test which can be selected by users. Finally, in the process of prediction on the

independent dataset, the unseen samples independent from the benchmark dataset will

be predicted based on the trained model generated before. For binary classification, the

performance of the constructed predictors is evaluated by five common performance

measures, and the corresponding ROC curves can also be generated.

For multiclass classification, only one measure is calculated. For more details of these

three processes, please refer to the “Methods description” section.

Input and output

The input files of “analysiss.py” are at least two files of biological sequence in FASTA

format. For binary classification problem, two files need to be input, storing the positive

samples and the negative samples, respectively. For multiclass classification, at least

three files are needed. The output file contains the trained SVM model or the Random

Forest model listing the parameters used in the training process and the log information,

for example:

c,128,g,0.5,b,0,bi_or_multi,0

svm_type c_svc

kernel_type rbf

gamma 0.5

nr_class 2

total_sv 2871

rho 33.5904

label 1 -1

nr_sv 1441 1430

SV

128 1:0.00108139 2:0.00108139 3:0.00108139 ……

……

28

When there is an independent dataset, if the label information of the samples is available,

the performance measures of the predictors will be calculated based on the predicted

labels and the input real labels, otherwise, the performance will not be evaluated. One

label should be listed in each line in the label file, for example:

+1

+1

+1

-1

-1

-1

……

If there has independent dataset, the output of “analysiss.py” will have a file containing

the predicted labels in the same format as the input label file.

ensemble.py

Basic functions

The “ensemble.py” is used for ensemble learning based on the models generated by

“train.py” or “analysiss.py”. Both binary classification and multiclass classification are

supported. The weight of every model can be specified by users. Default values are 1.0.

The strategy of prediction is weighted voting.

Input and output

The input file should be in tab format which can be generated by the scripts for feature

extraction. The format of label file should be the same as that of “predict.py”. The input

model files are those generated by “train.py” or “analysis.py”. For binary classification,

four measures, including the accuracy (ACC), Mathew’s Correlation Coefficient (MCC),

sensitivity (Sn), and specificity (Sp) are used for performance evaluation. For multiclass

classification, only ACC is calculated. The values of the measures will be printed on the

screen.

optimization.py

Basic functions

The “ensemble.py” is used for batch processing. This scrip is used for evaluating the

performance of all the predictors generated by BioSeq-Analysis-Seq so as to help the

users to find the best predictor for a specific biological sequence analysis task.

Input and output

The input file should be in fasta format. The parameters are similar with those in

“analysiss.py”.

2.4 Commands

“nac.py” usage

Command line arguments for “nac.py”:

Required description

inputfiles The input files in FASTA format. More than one file could

be input.

{DNA, RNA, Protein} The sequence type.

method The method name.

Optional description

29

-h, --help Show this help message and exit.

-out The output files used for storing results. The number

of output files should be the sa me as that of input

files.

-k K The k value of kmer.

-m M For mismatch. The max value inexact matching.

(m<k). (default = 1)

-delta For subsequence method. The value of penalized

factor. (0<=delta<=1). (default = 1)

-r {0,1} Whether consider the reverse complement or not. 1

means True, 0 means False. (default = 0)
-f {tab, svm, csv} The output format (default = tab).

tab -- Simple format, delimited by TAB. svm --

The LIBSVM training data format.

csv -- The format that can be loaded into a spreadsheet

program.

-labels The libSVM output file label. If the argument “-f ” is

set as “svm”, this argument is required. And the

number of labels should be the same as that of the

input files. For binary classification problem, the

labels should be '+1' or '-1'; For multiclass

classification problem, the labels can be set as

integers.

-ps The input positive source file in FASTA format for

IDKmer. Only for IDKmer method.

-ns The input negative source file in FASTA format for

IDKmer. Only for IDKmer method.

-max_dis The max distance value of DR and Distance Pair. Only

for DR and Distance Pair methods(default = 3).

-cp The reduced alphabet scheme. Choose one of the four:

cp_13, cp_14, cp_19, cp_20. Only for Distance Pair

method.

-sp {over, under,

none}

Balance the unbalanced data, default value is none.

Over is oversampling technique. Under is under

sampling technique.

“acc.py” usage
Command line arguments for “acc.py”:

Required description

inputfiles The input files in FASTA format. More than one file could

be input.

{DNA, RNA, Protein} The sequence type.

method The method name.

Optional Description

-h, --help Show this help message and exit.

-out The output files used for storing results. The number

of output files should be the same as that of input files.

-lag LAG The value of lag.

-i I The index file user chosen.

30

-e E The user-defined index file.

-all_index Choose all physicochemical indices.

-no_all_index Do not choose all physicochemical indices, default.

-f {tab, svm, csv} The output format (default = tab).

tab -- Simple format, delimited by TAB.

svm -- The LIBSVM training data format.

csv -- The format that can be loaded into a spreadsheet

program.

-labels The libSVM output file label. If the argument “-f ” is

set as “svm”, this argument is required. And the

number of labels should be the same as that of the

input files. For binary classification problem, the

labels should be '+1' or '-1'; For multiclass

classification problem, the labels can be set as

integers.

-lamada The value of lamada. Only for MAC, GAC, NMBAC

methods (default=1).

-oli Choose one kind of Oligonucleotide:

0 represents dinucleotide, default;

1 represents trinucleotide.

-sp {over, under,

none}

Balance the unbalanced data, default value is none.

Over is oversampling technique. Under is under

sampling technique.

“pse.py” usage

Command line arguments for “pse.py”:

Required description

inputfiles The input files in FASTA format. More than one file could

be input.

{DNA, RNA, Protein} The sequence type.

method The method name.

Optional description

-h, --help Show this help message and exit.

-out The output files used for storing results. The number

of output files should be the same as that of input files.

-lamada The value of lamada (default=2).

-w W The value of weight (default=0.1).

-k K The value of kmer, it works only with PseKNC method.

-e E The user-defined index file, this parameter only needs to be

set for PC-PseDNC-General, PC-PseTNC-General,

SC-PseDNC-General, SC-PseTNC-General, PC-

PseAAC-General or SC-PseAAC-General.

-all_index Choose all physicochemical indices.

-no_all_index Do not choose all physicochemical indices, default.

31

-f {tab, svm, csv} The output format (default = tab).

tab -- Simple format, delimited by TAB.

svm -- The LIBSVM training data format.

csv -- The format that can be loaded into a spreadsheet

program.

-labels The libSVM output file label. If the argument “-f ” is

set as “svm”, this argument is required. And the

number of labels should be the same as that of the

input files. For binary classification problem, the

labels should be '+1' or '-1'; For multiclass

classification problem, the labels can be set as

integers.

-sp {over, under,

none}

Balance the unbalanced data, default value is none.

Over is oversampling technique. Under is under

sampling technique.

“sc.py” usage

Command line arguments for “sc.py”:

Required description

inputfiles The input files in FASTA format. More than one file could

be input.

{DNA, RNA, Protein} The sequence type.

method The method name.

Optional description

-h, --help Show this help message and exit.

-out The output files used for storing results. The number

of output files should be the same as that of input files.

-k K The number of k adjacent structure statuses

(default=2). It works only with PseSSC method.

-n N The maximum distance between structure statuses

(default=0). It works only with PseDPC method.

-r R The value of lambda, represents the highest counted

rank (or tier) of the structural correlation along a RNA

chain (default=2).

-w W The weight factor used to adjust the effect of the correlation

factors (default=0.1).

-f {tab, svm, csv} The output format (default = tab).

tab -- Simple format, delimited by TAB.

svm -- The LIBSVM training data format.

csv -- The format that can be loaded into a spreadsheet

program.

-labels The libSVM output file label. If the argument “-f ” is

set as “svm”, this argument is required. And the

number of labels should be the same as that of the

input files. For binary classification problem, the

labels should be '+1' or '-1'; For multiclass

classification problem, the labels can be set as

integers.

32

-sp {over, under,

none}

Balance the unbalanced data, default value is none.

Over is oversampling technique. Under is under

sampling technique.

“profile.py” usage

Command line arguments for “profile.py”:

Required description

inputfiles The input files in FASTA format. More than one file could

be input.

method The method name.

Optional description

-h, --help Show this help message and exit.

-out The output files used for storing results. The number of

output files should be the same as that of input files.

-n N For Top-n-gram, PDT-Profile methods. The value of

top-n-gram. The value cam only be 1, 2 or 3.

-lamada For PDT, PDT-Profile methods. The value of lamada

(default=1). -max_dis For DT methods. The max distance value of residues

(default = 3).

-lag LAG For ACC-PSSM, AC-PSSM and CC-PSSM methods.

The value of lag (default = 2).

-f {tab, svm, csv} The output format (default = tab).

tab -- Simple format, delimited by TAB.

svm -- The LIBSVM training data format.

csv -- The format that can be loaded into a spreadsheet

program.

-labels The libSVM output file label. If the argument “-f ” is

set as “svm”, this argument is required. And the number

of labels should be the same as that of the input files. For

binary classification problem, the labels should be '+1'

or '-1'; For multiclass classification problem, the labels

can be set as integers.

 -cpu The maximum number of CPU cores used for

multiprocessing in generating frequency profile.

Default value is 1.

-sp {over, under,

none}

Balance the unbalanced data, default value is none. Over

is oversampling technique. Under is under sampling

technique.

“ps.py” usage

Command line arguments for “ps.py”:

Required description

inputfiles The input files in FASTA format. More than one file could

be input.

method The method name.

33

Optional description

-h, --help Show this help message and exit.

-out The output files used for storing results. The number

of output files should be the same as that of input files.

-f {tab, svm, csv} The output format (default = tab).

tab -- Simple format, delimited by TAB.

svm -- The LIBSVM training data format.

csv -- The format that can be loaded into a spreadsheet

program.

-labels The libSVM output file label. If the argument “-f ” is

set as “svm”, this argument is required. And the

number of labels should be the same as that of the

input files. For binary classification problem, the

labels should be '+1' or '-1'; For multiclass

classification problem, the labels can be set as

integers.

 -cpu The maximum number of CPU cores used for

multiprocessing in generating frequency profile.

Default value is 1.

-sp {over, under,

none}

Balance the unbalanced data, default value is none.

Over is oversampling for the datasets. Under is under

sampling for the datasets.

“feature.py” usage

Command line arguments for “feature.py”:

Required description

inputfiles The input files in FASTA format. More than one file could

be input.

{DNA, RNA, Protein} The sequence type.

-method The method names. You can input several

methods. The vector of each method

implements linear merging. Up to 3 methods.

Optional description

-h, --help Show this help message and exit.

-out The output files used for storing results. The number

of output files should be the same as that of input files.

-k K The number of k adjacent structure statuses.

(default=2). It works with PseKNC, PseSSC, Kmer,

RevKmer, IDKmer, Mismatch, Subsequence

methods. If there are several methods, enter the

values in turn.

-m M For Mismatch. The max value inexact matching.

(m<k) (default=1). If there are several methods, enter

the values in turn.

-delta For subsequence method. The value of penalized

factor. (0<=delta<=1) (default=1). If there are several

methods, enter the values in turn.

34

-r Whether consider the reverse complement or not. 1

means True, 0 means False.

For RevKmer methods. (default=0).

Or the value of lambda, represents the highest

counted rank (or tier) of the structural correlation

along a RNA chain.

For Triplet, PseSSC, PseDPC methods. (default=2).

If there are several methods, enter the values in turn.

-oli Choose one kind of Oligonucleotide:

0 represents dinucleotide, default;

1 represents trinucleotide.

For DAC, DCC, DACC, TAC, TCC, TACC, MAC,

GAC, NMBAC, AC, CC, ACC methods. If there are

several methods, enter the values in turn.

-lamada The value of lamada.

For PseDNC, PseKNC, PC-PseDNC-General,

PC-PseTNC-General, SC-PseDNC-General,

SC-PseTNC-General, PC-PseAAC-General,

SC-PseAAC-General, PC-PseAAC, SC-PseAAC

methods (default=2).

And For MAC, PDT, PDT-Profile, GAC, NMBAC

methods (default=1).

If there are several methods, enter the values in turn.

-w The weight factor used to adjust the effect of the

correlation factors.

For PseSSC, PseDNC, PseKNC,

PC-PseDNC-General, PC-PseTNC-General,

SC-PseDNC-General, SC-PseTNC-General,

PC-PseAAC-General, SC-PseAAC-General,

PC-PseAAC, SC-PseAAC methods (default=0.1). If

there are several methods, enter the values in turn.

-i The index file user chosen. If there are several

methods, enter the values in turn.

-e The user-defined index file. If there are several

methods, enter the values in turn.

-cpu The maximum number of CPU cores used for

multiprocessing in generating frequency profile.

(default=1).For Top-n-gram, PDT-Profile, DT,

AC-PSSM, CC-PSSM, ACC-PSSM, PDT methods.

-lag The value of lag. For DAC, DCC, DACC, TAC,

TCC, TACC, AC, CC, ACC, ACC-PSSM, AC-PSSM

and CC-PSSM methods. The value of lag (default=2).

If there are several methods, enter the values in turn.

-n The maximum distance between structure statuses,

(default=0). It works with PseDPC method.

Or for Top-n-gram, PDT-Profile methods. The value

of top-n-gram(default=2). If there are several

methods, enter the values in turn.

35

-f {tab, svm, csv} The output format (default = tab).

tab -- Simple format, delimited by TAB. svm --

The LIBSVM training data format.

csv -- The format that can be loaded into a spreadsheet

program.

-labels The libSVM output file label. If the argument “-f” is

set as “svm”, this argument is required. And the

number of labels should be the same as that of the

input files. For binary classification problem, the

labels should be '+1' or '-1'; For multiclass

classification problem, the labels can be set as

integers.

-ps The input positive source file in FASTA format for

IDKmer. Only for IDKmer method.

-ns The input negative source file in FASTA format for

IDKmer. Only for IDKmer method.

-max_dis The max distance value of DR, DT, Distance Pair.

Only for DR, DT and Distance Pair methods(default =

3). If there are several methods, enter the values in

turn.
-cp The reduced alphabet scheme. Choose one of the four:

cp_13, cp_14, cp_19, cp_20. Only for Distance Pair

method.

-sp {over, under,

none}

Balance the unbalanced data, default value is none.

Over is oversampling technique. Under is under

sampling technique.

-bp {1, 0} The option of batch processing. 1 is batch processing,

0 is not. Default is 0.

“train.py” usage

Command line arguments for “train.py”:

required description

files The input files.

If the algorithm is set as SVM, the format of files should be

LIBSVM format; if the algorithm is set as rf, the format of files

should be csv format; if the algorithm is set as oet_knn or cda,

the format of files should be tab format.

For binary classification, two files needed.

For multiclass classification, at least three files needed.

-m M The name of the trained SVM model. Only for svm and

rf.

Optional description

-h, --help Show this help message and exit.

-p {ACC,MCC,AUC} The performance metric used for parameter selection.

Default value is “ACC”.

-v V The cross validation mode.

n: (an integer larger than 0) n-fold cross validation.

j: (character “j”) jackknife cross validation.

36

-ind The independent test dataset, The input files in FASTA

format.

-ml {svm, rf, oet_knn,

cda}

The method of machine learning. svm is support vector

machine; rf is random forest; oet_knn is Optimized

Evidence-Theoretic KNN algorithm;

cda is covariance discriminant algorithm. (default is

svm)

-opt If the algorithm is set as svm:

0: small range set c from -5 to 10, step is 2; g from -10

to 5, step is 2.

1: large range set c from -5 to 10, step is 1; g from -10

to 5, step is 1.

If the algorithm is set as rf:

0: small range set number of trees from 100 to 600, step

is 200.

1: large range set number of trees from 100 to 600, step

is 100.

If the algorithm is set as oet_knn:

0: small range set neighbors from 1 to 30, step is 2.

1: large range set neighbors from 1 to 30, step is 1.

Default value is 0.

-b {0,1} Whether to train a SVC or SVR model for

probability estimates, 0 or 1. Default value is

0.

 -cpu CPU The maximum number of CPU cores used for

multiprocessing during parameter selection process.

Default value is 1.

-bp {1, 0} The option of batch processing. 1 is run batch processing, 0 is

not. Default is 0.

 “predict.py” usage

Command line arguments for “predict.py”:

required description

inputfiles The input files in LIBSVM format.

-m M The name of the trained SVM model.

optional description

-h, --help Show this help message and exit.

-labels LABELS The real label file. Optional.

-ml {svm, rf } The method of machine learning. rf is

Random Forest. (default is svm)

37

-o O The output file name listing the

predicted labels. The default name is

“output_labels.txt”.

“ensemble.py” usage

Command line arguments for “ensemble.py”:

required description

inputfile The input file in tab format.

-labels LABELS The real label file.

-classif The module files trained in train.py or analysis.py.

optional description

-h, --help Show this help message and exit.

-labels LABELS The real label file. Optional.

-w The weights of the classifiers. Default

values are all 1.0.

“analysis.py” usage

Command line arguments for “analysiss.py”:

Required description

inputfiles The input files in FASTA format. More than one file could

be input.

{DNA, RNA, Protein} The sequence type.

-model The name of the trained model.

-method The method names. You can input several

methods. The vector of each method

implements linear merging. Up to 3 methods.

Optional description

-h, --help Show this help message and exit.

-b{0, 1} Whether to train a SVC or SVR model for probability

estimates, 0 or 1.(default=0). For svm method.
-v The cross validation mode.

n: (an integer larger than 0) n-fold cross validation.

j: (character “j”) jackknife cross validation.

i: (character 'i') independent test set method. -opt Set the range of parameters to be optimized.

0: For svm, small range set c from -5 to 10, step is 2; g

from -10 to 5, step is 2. For random forest, trees from

100 to 600, step is 200.

1: large range set c from -5 to 10, step is 1; g from -10

to 5, step is 1. For random forest, trees from 100 to

600, step is 100. (default=0).

-p {ACC,MCC,AUC} The performance metric used for parameter selection.

Default value is “ACC”.

-ind The independent test dataset, The input files in

FASTA format.

38

-out The output files used for storing results. The number

of output files should be the same as that of input files.

-k K The number of k adjacent structure statuses. (For

PseKNC and Mismatch, default is from 1 to 4. For

Kmer, RevKmer, IDKmer, PseSSC and Subsequence,

default is from 1 to 3.). If there are several methods,

enter the ranges in turn.

-m M For Mismatch. The max value inexact matching.

(m<k) (default is from 1 to 4). If there are several

methods, enter the ranges in turn.

-delta For subsequence method. The value of penalized

factor. (0<=delta<=1) (default is from 0 to 0.8). If

there are several methods, enter the ranges in turn.

-a {True, False} Choose or do not choose all physicochemical indices,

default=False.

-r Whether consider the reverse complement or not. 1

means True, 0 means False.

For Kmer method. (default=0).

Or the value of lambda, represents the highest

counted rank (or tier) of the structural correlation

along a RNA chain.

For PseSSC, PseDPC methods. (default is from 1 to

7). If there are several methods, enter the ranges in

turn.

-oli Choose one kind of Oligonucleotide:

0 represents dinucleotide, default;

1 represents trinucleotide.

For DAC, DCC, DACC, TAC, TCC, TACC, MAC,

GAC, NMBAC, AC, CC, ACC methods.

-lamada The value of lamada.

For PseDNC, PseKNC, PC-PseDNC-General,

PC-PseTNC-General, SC-PseDNC-General,

SC-PseTNC-General, PC-PseAAC-General,

SC-PseAAC-General, PC-PseAAC, SC-PseAAC,

MAC, PDT, PDT-Profile, GAC, NMBAC methods

(default is from 1 to 7). If there are several methods,

enter the ranges in turn.

-w The weight factor used to adjust the effect of the

correlation factors.

For PseSSC, PseDNC, PseKNC,

PC-PseDNC-General, PC-PseTNC-General,

SC-PseDNC-General, SC-PseTNC-General,

PC-PseAAC-General, SC-PseAAC-General,

PC-PseAAC, SC-PseAAC methods (default is from

0.1 to 0.8). If there are several methods, enter the

ranges in turn. -i The index file user chosen.

-e The user-defined index file.

39

-cpu The maximum number of CPU cores used for

multiprocessing in generating frequency profile.

(default=1).For Top-n-gram, PDT-Profile, DT,

AC-PSSM, CC-PSSM, ACC-PSSM, PDT methods

and the number of CPU cores used for

multiprocessing during parameter selection process.

(default=1). -lag The value of lag. For DAC, DCC, DACC, TAC,

TCC, TACC, AC, CC, ACC, ACC-PSSM, AC-PSSM

and CC-PSSM methods. The value of lag (default is

from 1 to 7). If there are several methods, enter the

ranges in turn.

-n The maximum distance between structure statuses,

(default is from 1 to 4). It works with PseDPC

method.

Or for Top-n-gram, PDT-Profile methods. The value

of top-n-gram (default is from 1 to 2).

If there are several methods, enter the ranges in turn.

-ml {svm, rf, oet_knn,

cda}

The method of machine learning. rf is Random

Forest. Oet_knn is Optimized Evidence-Theoretic

K-Nearest Neighbor. Cda is covariance discriminant

algorithm (default is svm)

-rl The real label file. Optional.

-labels The libSVM output file label. If the argument “-f ” is

set as “svm”, this argument is required. And the

number of labels should be the same as that of the

input files. For binary classification problem, the

labels should be '+1' or '-1'; For multiclass

classification problem, the labels can be set as

integers.

-ps The input positive source file in FASTA format for

IDKmer. Only for IDKmer method.

-ns The input negative source file in FASTA format for

IDKmer. Only for IDKmer method.

-max_dis The max distance value of DR, DT, Distance Pair.

Only for DR, DT and Distance Pair methods(default is

from 1 to 4). If there are several methods, enter the

ranges in turn.

-cp The reduced alphabet scheme. Choose one of the four:

cp_13, cp_14, cp_19, cp_20. Only for Distance Pair

method.

-sp {over, under,

none}

Balance the unbalanced data, default value is none.

Over is oversampling technique. Under is under

sampling technique.

-bp {1, 0} The option of batch processing. 1 is batch processing,

0 is not. Default is 0.

“optimization.py” usage

Command line arguments for “optimization.py”:

Required description

inputfiles The input files in FASTA format. More than one file could

be input.

40

{DNA, RNA, Protein} The sequence type.

-model The name of the trained model.

Optional description

-h, --help Show this help message and exit.

-v The cross validation mode.

n: (an integer larger than 0) n-fold cross validation.

j: (character “j”) jackknife cross validation.

i: (character 'i') independent test set method. -opt Set the range of parameters to be optimized.

0: For svm, small range set c from -5 to 10, step is 2; g

from -10 to 5, step is 2. For random forest, trees from

100 to 600, step is 200.

1: large range set c from -5 to 10, step is 1; g from -10

to 5, step is 1. For random forest, trees from 100 to

600, step is 100. (default=0).

-out The output files used for storing results. The number

of output files should be the same as that of input files.

-cpu The maximum number of CPU cores used for

multiprocessing in generating frequency profile.

(default=1).For Top-n-gram, PDT-Profile, DT,

AC-PSSM, CC-PSSM, ACC-PSSM, PDT methods

and the number of CPU cores used for

multiprocessing during parameter selection process.

(default=1). -ml { svm, rf, oet_knn,

_cda }

The method of machine learning. rf is Random

Forest. Oet_knn is Optimized Evidence-Theoretic

K-Nearest Neighbor. Cda is covariance discriminant

algorithm (default is svm)

-labels The libSVM output file label. If the argument “-f ” is

set as “svm”, this argument is required. And the

number of labels should be the same as that of the

input files. For binary classification problem, the

labels should be '+1' or '-1'.

-sp {over, under,

none}

Balance the unbalanced data, default value is none.

Over is oversampling technique. Under is under

sampling technique.

-bp {1, 0} The option of batch processing. 1 is batch processing,

0 is not. Default is 0.

Example

Four examples of using BioSeq-Analysis-Seq to construct machine learning predictor

for solving a specific task in bioinformatics are given.

Example of DNA

Reconstructing the predictor iDHS-EL for identification DNase I hypersensitive sites by

fusing three different modes of pseudo nucleotide composition based on the benchmark

dataset (22) by using BioSeq-Analysis-Seq.

The benchmark dataset contains 280 positive samples and 737 negative samples. The

benchmark dataset are available at here

In this example, the files “dna_pos.txt” and “dna_neg.txt” contain the positive dataset

and negative dataset of the benchmark dataset, respectively. All these two files are

http://bioinformatics.hitsz.edu.cn/iDHS-EL/static/Supplementary%20Information%20S1.pdf

41

available in the “/data/example” folder.

We can use a command to implement feature extraction and model training, while

implementing optimization parameters.

python analysis.py ./data/example/dna_pos.txt ./data/example/dna_neg.txt DNA

-method Kmer Kmer PseDNC -ml rf -k 1 3 1 3 -lamada 1 3 -w 0.1 0.2 -r 0 1 -labels

+1 -1 -model dna.model -opt 0 -v 5 -cpu 2

The output informations is as follows:

Processing...

MMethod Kmer is calculating...k is 1 trees are 100ethod Kmer is calculating...k is 1

trees are 300

The output file(s) can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_

csv_Kmer_k_1.txt

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_

csv_Kmer_k_1.txt

The output file(s) can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_

csv_Kmer_k_1.txt

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_

csv_Kmer_k_1.txt

Method Kmer is calculating...k is 1 trees are 500

Method Kmer is calculating...k is 2 trees are 100

Method Kmer is calculating...k is 2 trees are 300

Method Kmer is calculating...k is 2 trees are 500

Method Kmer is calculating...k is 3 trees are 100

The output file(s) can be found here:

C:\Users\Downloads\

BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_csv_Kmer_k_3.txt

C:\Users\Downloads\

BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_csv_Kmer_k_3.txt

Method Kmer is calculating...k is 3 trees are 300

Method Kmer is calculating...k is 3 trees are 500

The output file(s) with the best params can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_

csv_Kmer_k_2.txt

The output file(s) with the best params can be found here:

……

……

……

The output file(s) can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_

csv_PseDNC_lamada_3_w_0.2.txt

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_

csv_PseDNC_lamada_3_w_0.2.txt

Method PseDNC is calculating...lamada is 3 w is 0.20 trees are 300

Method PseDNC is calculating...lamada is 3 w is 0.20 trees are 500

42

The output file(s) with the best params can be found here:

C:\Users\

Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_csv_PseD

NC_lamada_1_w_0.2.txt

The output file(s) with the best params can be found here:

C:\Users\Downloads\

BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_csv_PseDNC_lamada

_1_w_0.2.txt

Parameters selecting of features done!

Combine the features of given methods and train it...

Method Kmer is calculating...

The output file(s) can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_

csv.txt

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_

csv.txt

Method Kmer is calculating...

The output file(s) can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_

csv.txt

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_

csv.txt

Method PseDNC is calculating...

The output file(s) can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_pos_

csv.txt

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\dna_neg_

csv.txt

Processing...

Parameter selection is in processing...

Trees are 100...

Trees are 300...

Trees are 500...

The time cost for parameter selection is 22.30s

Parameter selection of Random Forest completed.

The optimal parameters for the dataset is: Trees = 500

Model training is in processing...

The cross validation results are as follows:

ACC = 0.8514

MCC = 0.6084

AUC = 0.8311

Sn = 0.6607

Sp = 0.9239

The ROC curve has been saved. You can check it here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\cv_ro

c.png

43

Model training completed.

The model has been saved. You can check it here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\dna.m

odel

Total used time: 234.78s

The generated ROC curve is shown in Fig. 1.

Fig .1. The ROC curve of cross validation

As shown in this example, the iDHS-EL can be easily constructed based on the

benchmark dataset by using the script “analysis.py”.

Example of RNA

Reconstructing the predictor iMcRNA-PseSSC for identification of real microRNA

precursors based on the benchmark dataset (22) by using BioSeq-Analysis-Seq.

The benchmark dataset contains 1612 positive samples and 1612 negative samples. The

benchmark dataset are available at here.

In this example, the files “rna_pos_with_2rd_structure.txt” and

“rna_neg_with_2rd_structure.txt” contain the positive dataset and negative dataset of the

benchmark dataset, respectively. All these two files are available in the “/data/example”

folder.

We can use a command to implement feature extraction and model training, while

implementing optimization parameters.

python analysis.py ./data/example/rna_pos_with_2rd_structure.txt ./data/example/

rna_neg_with_2rd_structure.txt RNA -method PseSSC -k 1 2 -r 5 6 -w 0.4 0.6 -ml

svm -labels +1 -1 -model rna.model -opt 0 -v 5 -cpu 4

The output informations is as follows:

Processing...

Method Kmer is calculating...k is 1 c is -5 g is -10M

ethod Kmer is calculating...k is 1 c is -5 g is -7

The output file(s) can be found here:

http://bioinformatics.hitsz.edu.cn/iMcRNA/download

44

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_pos_s

vm_Kmer_k_1.txthe output file(s) can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_pos_s

vm_Kmer_k_1.txt

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_neg_s

vm_Kmer_k_1.txt:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\ex

ample\rna_neg_svm_Kmer_k_1.txt

Method Kmer is calculating...k is 1 c is -5 g is -4

Method Kmer is calculating...k is 1 c is -5 g is -1

Method Kmer is calculating...k is 1 c is -5 g is 2

Method Kmer is calculating...k is 1 c is -5 g is 5

Method Kmer is calculating...k is 1 c is -2 g is -10

Method Kmer is calculating...k is 1 c is -2 g is -7

Method Kmer is calculating...k is 1 c is -2 g is -4

Method Kmer is calculating...k is 1 c is -2 g is -1

Method Kmer is calculating...k is 1 c is -2 g is 2

……

……

……

Method Kmer is calculating...k is 1 c is 10 g is -10

Method Kmer is calculating...k is 1 c is 10 g is -7

Method Kmer is calculating...k is 1 c is 10 g is -4

Method Kmer is calculating...k is 1 c is 10 g is -1

Method Kmer is calculating...k is 1 c is 10 g is 2

Method Kmer is calculating...k is 1 c is 10 g is 5

Method Kmer is calculating...k is 2 c is -5 g is -10

The output file(s) can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_pos_s

vm_Kmer_k_2.txt

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_neg_s

vm_Kmer_k_2.txt

Method Kmer is calculating...k is 2 c is -5 g is -7

Method Kmer is calculating...k is 2 c is -5 g is -4

Method Kmer is calculating...k is 2 c is -5 g is -1

Method Kmer is calculating...k is 2 c is -5 g is 2

Method Kmer is calculating...k is 2 c is -5 g is 5

Method Kmer is calculating...k is 2 c is -2 g is -10

Method Kmer is calculating...k is 2 c is -2 g is -7

……

……

Method Kmer is calculating...k is 2 c is 7 g is -1

Method Kmer is calculating...k is 2 c is 7 g is 2

Method Kmer is calculating...k is 2 c is 7 g is 5

Method Kmer is calculating...k is 2 c is 10 g is -10

Method Kmer is calculating...k is 2 c is 10 g is -7

Method Kmer is calculating...k is 2 c is 10 g is -4

Method Kmer is calculating...k is 2 c is 10 g is -1

Method Kmer is calculating...k is 2 c is 10 g is 2

Method Kmer is calculating...k is 2 c is 10 g is 5

The output file(s) with the best params can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_pos_s

45

vm_Kmer_k_2.txt

The output file(s) with the best params can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_neg_s

vm_Kmer_k_2.txt

Parameters selecting of features done!

Combine the features of given methods and train it...

Method Kmer is calculating...

The output file(s) can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_pos_s

vm.txt

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\rna_neg_s

vm.txt

Processing on the best params...

Parameter selection is in processing...

Iteration c = 10 g = -7 finished.

Iteration c = -5 g = -1 finished.

Iteration c = 4 g = -1 finished.

Iteration c = 4 g = 2 finished.

Iteration c = 4 g = -4 finished.

Iteration c = -2 g = -4 finished.

Iteration c = 7 g = -7 finished.

Iteration c = 1 g = -4 finished.

Iteration c = -5 g = -4 finished.

Iteration c = 4 g = 5 finished.

……

……

……

Iteration c = -5 g = 5 finished.

Iteration c = 1 g = -1 finished.

Iteration c = -5 g = 2 finished.

Iteration c = 1 g = -10 finished.

Iteration c = 1 g = 2 finished.

Iteration c = 7 g = 5 finished.

Iteration c = 7 g = -4 finished.

Iteration c = 10 g = 2 finished.

The time cost for parameter selection is 74.15s

Parameter selection completed.

The optimal parameters for the dataset are: C = 16 gamma = 4

Model training is in processing...

The cross validation results are as follows:

ACC = 0.7212

MCC = 0.4435

AUC = 0.7894

Sn = 0.6887

Sp = 0.7546

The ROC curve has been saved. You can check it here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\cv_ro

46

c.png

Model training completed.

The model has been saved. You can check it here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\rna.m

odel

Done.

Used time: 80.52s

Total used time: 171.21s

The generated ROC curve is shown in Fig. 2.

Fig .2. The ROC curve of cross validation

As shown in this example, the iMcRNA-PseSSC can be easily constructed based on the

benchmark dataset by using the script “analysis.py”.

Example of protein

Reconstructing the predictor PseDNA-Pro for DNA binding protein identification based

on the benchmark dataset (22), and evaluating its performance on an independent dataset

(29) by using BioSeq-Analysis-Seq.

The benchmark dataset contains 525 positive samples and 550 negative samples. There

are 93 positive samples and 93 negative samples in the independent dataset. The

benchmark dataset and independent dataset are available at benchmark dataset and

independent dataset, respectively.

In this example, the files “protein_pos.txt” and “protein_neg.txt” contain the positive

dataset and negative dataset of the benchmark dataset, respectively. The samples of the

independent dataset and their labels are stored in the files “protein_test.txt” and

“labels.txt”, respectively. All these four files are available in the “/data/example” folder.

We can use a command to implement feature extraction and model training, while

implementing optimization parameters.

python analysis.py ./data/example/Protein_pos.txt ./data/example/Protein_neg.txt

Protein -method PC-PseAAC -lamada 2 4 -w 0.05 0.3 -ml svm -labels +1 -1 -model

protein.model -opt 0 -v 5

The output informations is as follows:

Processing...

http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/static/download/Supplementary%20S2.doc
http://bioinformatics.hitsz.edu.cn/iDNAPro-PseAAC/static/download/Supplementary%20S3.doc

47

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -10

The output file(s) can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_p

os_svm_PC-PseAAC_lamada_2_w_0.05.txt

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_n

eg_svm_PC-PseAAC_lamada_2_w_0.05.txt

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -7

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -4

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -1

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is 2

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is 5

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -10

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -7

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -4

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -1

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is 2

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is 5

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -10

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -7

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -4

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -1

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is 2

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is 5

……

……

……

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 4 g is 5

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 7 g is -10

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 7 g is -7

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 7 g is -4

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 7 g is -1

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 7 g is 2

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 7 g is 5

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -10

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -7

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -4

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -1

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is 2

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is 5

The output file(s) with the best params can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_p

os_svm_PC-PseAAC_lamada_3_w_0.05.txt

The output file(s) with the best params can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_n

eg_svm_PC-PseAAC_lamada_3_w_0.05.txt

Parameters selecting of features done!

Combine the features of given methods and train it...

Method PC-PseAAC is calculating...

The output file(s) can be found here:

48

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_p

os_svm.txt

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_n

eg_svm.txt

Processing on the best params...

Parameter selection is in processing...

Iteration c = 7 g = -1 finished.

Iteration c = 4 g = -10 finished.

Iteration c = 4 g = 5 finished.

Iteration c = 4 g = -1 finished.

Iteration c = 10 g = -1 finished.

……

……

……

Iteration c = 7 g = 2 finished.

Iteration c = -5 g = 2 finished.

Iteration c = 4 g = -4 finished.

Iteration c = -2 g = -4 finished.

Iteration c = -2 g = -1 finished.

Iteration c = 1 g = -1 finished.

Iteration c = 4 g = -7 finished.

Iteration c = 10 g = -4 finished.

The time cost for parameter selection is 32.54s

Parameter selection completed.

The optimal parameters for the dataset are: C = 16 gamma = 4

Model training is in processing...

The cross validation results are as follows:

ACC = 0.7526

MCC = 0.5049

AUC = 0.8177

Sn = 0.7429

Sp = 0.7615

The ROC curve has been saved. You can check it here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\cv_ro

c.png

Model training completed.

The model has been saved. You can check it here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\protei

n.model

Done.

Used time: 35.35s

Total used time: 308.27s

The generated ROC curve is shown in Fig. 3.

49

Fig .3. The ROC curve of cross validation

As shown in this example, the PseDNA-Pro can be easily constructed based on the

benchmark dataset by using the script “analysis.py”.

If we want to use an independent test set to evaluate the model, we can change this

command to:

python analysis.py ./data/example/Protein_pos.txt ./data/example/Protein_neg.txt

Protein -method PC-PseAAC -lamada 2 4 -w 0.05 0.3 -ml svm -labels +1 -1 -model

protein.model -ind ./data/example/protein_test.txt -rl ./data/example/labels.txt -opt 0

-v 5 -cpu 4

The output informations is as follows:

Processing...

MMethod PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -10ethod

PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -7

TThe output file(s) can be found here:he output file(s) can be found here:

CC:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_

pos_svm_PC-PseAAC_lamada_2_w_0.05.txt:\Users\Downloads\BioSeq-Analysis2.0\Bi

oSeq-Analysis-Seq\data\example\Protein_pos_svm_PC-PseAAC_lamada_2_w_0.05.txt

CC:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_

neg_svm_PC-PseAAC_lamada_2_w_0.05.txt:\Users\Downloads\BioSeq-Analysis2.0\Bi

oSeq-Analysis-Seq\data\example\Protein_neg_svm_PC-PseAAC_lamada_2_w_0.05.txt

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -4

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is -1

MMethod PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is 5

ethod PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -5 g is 2

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -10

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -7

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -4

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is -1

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is 2M

ethod PC-PseAAC is calculating...lamada is 2 w is 0.05 c is -2 g is 5

50

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -10

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -7

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -4

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is -1

MMethod PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is 2ethod

PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 1 g is 5

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 4 g is -10

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 4 g is -7

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 4 g is -4

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 4 g is -1

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 4 g is 2

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 4 g is 5

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 7 g is -10

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 7 g is -7

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 7 g is -4

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 7 g is -1

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 7 g is 2

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 7 g is 5

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 10 g is -10

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 10 g is -7

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 10 g is -4

Method PC-PseAAC is calculating...lamada is 2 w is 0.05 c is 10 g is -1

……

……

……

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -10

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -7

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -4

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is -1

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is 2

Method PC-PseAAC is calculating...lamada is 4 w is 0.35 c is 10 g is 5

The output file(s) with the best params can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_p

os_svm_PC-PseAAC_lamada_2_w_0.35.txt

The output file(s) with the best params can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_n

eg_svm_PC-PseAAC_lamada_2_w_0.35.txt

Parameters selecting of features done!

Combine the features of given methods and train it...

Method PC-PseAAC is calculating...

The output file(s) can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_p

os_svm.txt

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\Protein_n

eg_svm.txt

Processing on the best params...

Parameter selection is in processing...

Iteration c = -5 g = -7 finished.

Iteration c = -5 g = 2 finished.

51

Iteration c = -2 g = -10 finished.

Iteration c = 10 g = 2 finished.

Iteration c = 4 g = 2 finished.

Iteration c = 10 g = 5 finished.

Iteration c = -2 g = 2 finished.

Iteration c = -2 g = 5 finished.

……

……

Iteration c = 4 g = -10 finished.

Iteration c = 7 g = -1 finished.

Iteration c = 4 g = -7 finished.

Iteration c = 10 g = -10 finished.

Iteration c = 7 g = 2 finished.

The time cost for parameter selection is 20.52s

Parameter selection completed.

The optimal parameters for the dataset are: C = 128 gamma = 4

Model training is in processing...

The cross validation results are as follows:

ACC = 0.7423

MCC = 0.4851

AUC = 0.8141

Sn = 0.7367

Sp = 0.7484

The ROC curve has been saved. You can check it here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\cv_ro

c.png

Model training completed.

The model has been saved. You can check it here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\protei

n.model

Done.

Used time: 23.44s

Predict on the independent dataset...

Method PC-PseAAC is calculating...

The output file(s) can be found here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\example\protein_te

st_svm.txt

The parameters of RBF kernel:

c = 128 g = 4

The performance evaluations are as follows:

ACC = 0.6828

MCC = 0.3692

AUC = 0.7237

Sn = 0.7527

Sp = 0.6129

52

The ROC curve has been saved. You can check it here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\predic

ted_roc.png

The predicted labels have been saved. You can check it here:

C:\Users\Downloads\BioSeq-Analysis2.0\BioSeq-Analysis-Seq\data\final_results\output

_labels.txt

Done.

Used time: 1.30s

Total used time: 183.47s

2.5 Methods description

2.5.1 Feature extraction

The BioSeq-Analysis-Seq stand-alone package is able to generate totally 56 different

modes of pseudo components for DNA, RNA, and protein sequences, including 20 modes

for DNA sequences (Table 1-b), 14 modes for RNA sequences (Table 2-b), and 22

modes for protein sequences (Table 3-b). The detailed information of the 56 methods will

be introduced in BioSeq-Analysis-Seq description document which can be downloaded

from here: http://bliulab.net/BioSeq-Analysis2.0/doc/ .

For many biological sequence analysis tasks, the training sets are imbalanced. As a result,

a predictor trained by a skewed dataset would inevitably lead to a bias consequence (24).

The oversampling and undersampling are widely used to minimize this bias consequence.

For undersampling, some samples are randomly removed from the large class to make the

number of samples in different classes the same. For the oversampling, some hypothetical

samples are inserted into the small classes in order to make each class with equal number

of samples. In BioSeq-Analysis-Seq, the SMOTE algorithm (25) were employed to

generate the hypothetical samples for this purpose.

2.5.2 Parameter selection

In LIBSVM there are two parameters c and g which can determine the performance of

the predictor. In Random Forest there is one parameter t which can determine the

performance of the predictor. In OET-KNN, there is one parameter k which can

determine the performance of the predictor. Each method of the 56 methods achieved in

stand-alone package has respective parameters, such as the Kmer method has parameter

“k”. BioSeq-Analysis-Seq is able to automatically optimize these parameters based on

the best performance on the validation set. Users can choose a range of the parameters

for optimizing. For more information of the input format, please refer to “Commands”

section.

To improve the efficiency of this procedure, multiprocessing technique is applied, which

significantly reduces the computational cost. One of the three performance measures,

including Accuracy (ACC), Mathew’s Correlation Coefficient (MCC) and Area Under

roc Curve (AUC) can be used as the golden standard to optimize the parameters.

2.5.3 Predictor construction

In the model training process, this model is trained based on LIBSVM with RBF kernel,

Random Forest, and two lazy learning algorithms: OET-KNN and Covariance

Discriminant.

2.5.4 Cross validation

BioSeq-Analysis-Seq provides three types of cross validation options, including k-fold

cross validation, jackknife (leave-one-out cross validation) and independent dataset test,

which can be chosen by the argument “-v”. Please refer to “Commands” section for

http://bliulab.net/BioSeq-Analysis2.0/doc/

53

more details.

For binary classification, the performance of the predictor is measured by five common

performance measures, including the accuracy (ACC), Mathew’s Correlation Coefficient

(MCC), Area Under roc Curve (AUC), sensitivity (Sn), and specificity (Sp).

Furthermore, the ROC (Receiver Operating Characteristic) (26) curve will also be

generated and saved in a PNG file.

For multiclass classification, only the performance measure of ACC is calculated since

the other measures are not suitable for multiclass classification.

Besides, if the parameter “-b” of libsvm is set or using the random forest, the prediction

probability values will be output and save as a file, thus users can do further analysis

with these data.

2.5.5 Sequence prediction

The “predict.py” is used to predict the unseen samples based on the model trained by

using “train.py”. The performance of the predictors can be further evaluated on the

independent datasets. If the label information of the independent dataset is not available,

the performance of the predictor will not be evaluated, and only the predicted labels are

given. Otherwise, this script will output the predicted labels. For binary classification,

the five performance measures (ACC, MCC, AUC, Sn, and Sp) will be calculated along

with the corresponding ROC curve saved as a PNG file; for multiclass classification,

only the performance measure ACC will be calculated.

2.5.6 Ensemble learning

Sometimes one predictor may not achieve the expected results. By combining several

different predictors, better prediction performance could be obtained. Thus, ensemble

learning has been widely used. The stand-alone package of BioSeq-Analysis-Seq

provides a script “ensemble.py” used for ensemble learning based on the predictors

generated by “train.py” or “analysis.py”.

Table 1-a. 7 residue-level modes for DNA sequences.

Category Mode Description

Residue composition

One-hot Basic one-hot (30)

Position-specific-2
Position-specific of two

nucleotides (31)

Position-specific-3
Position-specific of three

nucleotides (31)

Position-specific-4
Position-specific of four

nucleotides(31)

Physicochemical

property

DPC Dinucleotide physicochemical

(32,33)

Trinucleotide physicochemical

(32,33)
TPC

Evolutionary information BLAST-matrix BLAST-matrix (34)

54

Table 1-b. 20 sequence-level modes for DNA sequences.

Category Mode Description

Nucleic acid Composition

Kmer Basic kmer (35)

RevKmer Reverse complementary

kmer(36,37)

IDKmer increment of diversity (38-40)

Mismatch The occurrences of kmers,

allowing at most m mismatches

(41-43)

Subsequence The occurrences of kmers,

allowing non-contiguous

matches (41,43,44)

Autocorrelation

DAC Dinucleotide-based auto

covariance (45,46)

DCC Dinucleotide-based cross

covariance (45,46)

DACC Dinucleotide-based auto-cross

covariance (45,46)

TAC Trinucleotide-based auto

covariance (45)

TCC Trinucleotide-based cross

covariance (45)

TACC Trinucleotide-based auto-cross

covariance (45)

MAC Moran autocorrelation (47,48)

GAC Geary autocorrelation (48,49)

NMBAC Normalized Moreau-Broto

autocorrelation (48,50)

Pseudo nucleotide

composition

PseDNC Pseudo dinucleotide

composition (51)

PseKNC Pseudo k-tuple nucleotide

composition (52,53)

PC-PseDNC-General General parallel correlation

pseudo dinucleotide

composition (54)

PC-PseTNC-General General parallel correlation

pseudo trinucleotide

composition (54)

SC-PseDNC-General General series correlation

pseudo dinucleotide

composition (54)

SC-PseTNC-General General series correlation

pseudo trinucleotide

composition (54)

Table 2-a. 6 residue-level modes for RNA sequences.

Category Mode Description

Residue composition

One-hot Basic one-hot (30)

Position-specific-2
Position-specific of two

nucleotides (31)

55

Position-specific-3
Position-specific of three

nucleotides (31)

Position-specific-4
Position-specific of four

nucleotides(31)

Physicochemical

property
DPC

Dinucleotide physicochemical

(32,33)

Structure composition SS Secondary structure (55)

Table 2-b. 14 sequence-level modes for RNA sequences.

Category Mode Description

Nucleic acid Composition

Kmer Basic kmer (53)

Mismatch The occurrences of kmers,

allowing at most m

mismatches (41-43)

Subsequence The occurrences of kmers,

allowing non-contiguous

matches (41,43,44)

Autocorrelation

DAC Dinucleotide-based auto

covariance (45,46,56)

DCC Dinucleotide-based cross

covariance (45,46,56)

DACC Dinucleotide-based

auto-cross covariance

(45,46,56)

MAC Moran autocorrelation

(47,48)

GAC Geary autocorrelation

(48,49)

NMBAC Normalized

Moreau-Broto

autocorrelation (48,50)

Pseudo nucleotide

composition

PC-PseDNC- General General parallel

correlation pseudo

dinucleotide composition

(46,48)

SC-PseDNC-General General series correlation

pseudo dinucleotide

composition (46,48)

Predicted Structure

composition

Triplet Local structure-sequence

triplet element (57)

PseSSC Pseudo-structure status

composition (22)

PseDPC Pseudo-distance structure

status pair composition

(58)

Table 3-a. 13 residue-level modes for protein sequences

Category Mode Description

Residue composition One-hot Basic one-hot (30)

56

One-hot(6-bit)
6-dimension One-hot method

(59)

Binary(5-bit)
Use five binary bit to encode

(60)

AESNN3 Learn from alignments (61)

Position-specific-2 Position-specific of two

residues (31)

Physicochemical

property
PP Properties form AAindex (62)

Structure composition

SS Secondary structure (63)

SASA
Solvent accessible surface area

(64)

Evolutionary information

PAM250 PAM250 matrix (65)

BLOSUM62 BLOSUM62 matrix (66)

PSSM PSSM matrix (67)

PSFM Frequency profiles matrix (68)

CS Conservation score (69)

Table 3-b. 22 sequence-level modes for protein sequences.

Category Mode Description

Amino acid composition

Kmer Basic kmer (70)

DR Distance-based Residue

(71)

Distance Pair PseAAC of

Distance-Pairs and

Reduced Alphabet (72)

Autocorrelation

AC Auto covariance (45,56)

CC Cross covariance (45,56)

ACC Auto-cross covariance

(45,56)

PDT Physicochemical distance

transformation (73)

Pseudo amino acid

composition

PC-PseAAC Parallel correlation

pseudo amino acid

composition (74)

SC-PseAAC Series correlation pseudo

amino acid composition

(75)

PC-PseAAC-General General parallel

correlation pseudo amino

acid composition (74,76)

SC-PseAAC-General General series correlation

pseudo amino acid

composition (75,76)

Profile-based features
Top-n-gram Select and combine the n

most frequent amino acids

57

according to their

frequencies. (70)

PDT-Pofile Profile-based

Physicochemical distance

transformation (73)

DT Distance-based

Top-n-gram (71)

AC-PSSM Profile-based Auto

covariance (45)

CC-PSSM Profile-based Cross

covariance (45)

ACC-PSSM Profile-based Auto-cross

covariance (45)

PSSM-DT PSSM distance

transformation (77)

PSSM-RT PSSM relation

transformation (78)

CS sequence conservation

score (69)

Predicted structure

features

SS secondary structure (63)

SASA solvent accessible surface

area (64)

Table 4. The names of the 148 physicochemical indices for dinucleotides.

Base stacking Protein
induced deformability

B-DNA twist

Propeller twist Duplex
stability:(freeenergy)

Duplex tability(disruptenergy)

Protein DNA twist Stabilising energy of
Z-DNA

Aida_BA_transition

Breslauer_dS Electron_interaction Hartman_trans_free_energy

Lisser_BZ_transition Polar_interaction SantaLucia_dG

Sarai_flexibility Stability Stacking_energy

Sugimoto_dS Watson-Crick_interactio
n

Twist

Shift Slide Rise

Twist stiffness Tilt stiffness Shift_rise

Twist_shift Enthalpy1 Twist_twist

Shift2 Tilt3 Tilt1

Slide (DNA-protein
complex)1

Tilt_shift Twist_tilt

Roll_rise Stacking energy Stacking energy1

Propeller Twist Roll11 Rise (DNA-protein complex)

Roll2 Roll3 Roll1

Slide_slide Enthalpy Shift_shift

Flexibility_slide Minor Groove Distance Rise (DNA-protein complex)1

Roll (DNA-protein
complex)1

Entropy Cytosine content

Major Groove Distance Twist (DNA-protein
complex)

Purine (AG) content

Tilt_slide Major Groove Width Major Groove Depth

Free energy6 Free energy7 Free energy4

Free energy3 Free energy1 Twist_roll

Flexibility_shift Shift (DNA-protein
complex)1

Thymine content

Tip Keto (GT) content Roll stiffness

58

Entropy1 Roll_slide Slide (DNA-protein complex)

Twist2 Twist5 Twist4

Tilt (DNA-protein
complex)1

Twist_slide Minor Groove Depth

Persistance Length Rise3 Shift stiffness

Slide3 Slide2 Slide1

Rise1 Rise stiffness Mobility to bend towards minor
groove

Dinucleotide GC Content A-philicity Wedge

DNA denaturation Bending stiffness Free energy5

Breslauer_dG Breslauer_dH Shift (DNA-protein complex)

Helix-Coil_transition Ivanov_BA_transition Slide_rise

SantaLucia_dH SantaLucia_dS Minor Groove Width

Sugimoto_dG Sugimoto_dH Twist1

Tilt Roll Twist7

Clash Strength Roll_roll Roll (DNA-protein complex)

Adenine content Direction Probability contacting
nucleosome core

Roll_shift Shift_slide Shift1

Tilt4 Tilt2 Free energy8

Twist (DNA-protein
complex)1

Tilt_rise Free energy2

Stacking energy2 Stacking energy3 Rise_rise

Tilt_tilt Roll4 Tilt_roll

Minor Groove Size GC content Inclination

Slide stiffness Melting Temperature1 Twist3

Tilt (DNA-protein
complex)

Guanine content Twist6

Major Groove Size Twist_rise Rise2

Melting Temperature Free energy Mobility to bend towards major
groove

Bend

Table 5. The names of the 12 physicochemical indices for trinucleotides.

Bendability (DNAse) Bendability (consensus) Trinucleotide GC Content

Consensus_roll Consensus-Rigid Dnase I

MW-Daltons MW-kg Nucleosome

Nucleosome positioning Dnase I-Rigid Nucleosome-Rigid

Table 6. The names of the 90 physicochemical indices for dinucleotides.

Base stacking Protein induced deformability B-DNA twist

Dinucleotide GC

Content

A-philicity Propeller twist

Duplex

stability-free energy

Duplex stability-disrupt energy DNA denaturation

Bending stiffness Protein DNA twist Stabilising energy of

Z-DNA

Aida_BA_transition Breslauer_dG Breslauer_dH

Breslauer_dS Electron_interaction Hartman_trans_free_ener

gy

Helix-Coil_transitio

n

Ivanov_BA_transition Lisser_BZ_transition

Polar_interaction SantaLucia_dG SantaLucia_dH

SantaLucia_dS Sarai_flexibility Stability

Stacking_energy Sugimoto_dG Sugimoto_dH

59

Sugimoto_dS Watson-Crick_interaction Twist

Tilt Roll Shift

Slide Rise Stacking energy

Bend Tip Inclination

Major Groove

Width

Major Groove Depth Major Groove Size

Major Groove

Distance

Minor Groove Width Minor Groove Depth

Minor Groove Size Minor Groove Distance Persistance Length

Melting

Temperature

Mobility to bend towards major

groove

Mobility to bend towards

minor groove

Propeller Twist Clash Strength Enthalpy

Free energy Twist_twist Tilt_tilt

Roll_roll Twist_tilt Twist_roll

Tilt_roll Shift_shift Slide_slide

Rise_rise Shift_slide Shift_rise

Slide_rise Twist_shift Twist_slide

Twist_rise Tilt_shift Tilt_slide

Tilt_rise Roll_shift Roll_slide

Roll_rise Slide stiffness Shift stiffness

Roll stiffness Rise stiffness Tilt stiffness

Twist stiffness Wedge Direction

Flexibility_slide Flexibility_shift Entropy

Table 7. The names of the 6 physicochemical indices for dinucleotides.

Twist Tilt Roll
Shift Slide Rise

Table 8. The names of the 22 physicochemical indices for dinucleotides.

Shift (RNA) Hydrophilicity (RNA)
Hydrophilicity (RNA) GC content
Purine (AG) content Keto (GT) content
Adenine content Guanine content
Cytosine content Thymine content
Slide (RNA) Rise (RNA)
Tilt (RNA) Roll (RNA)
Twist (RNA) Stacking energy (RNA)
Enthalpy (RNA) Entropy (RNA)
Free energy (RNA) Free energy (RNA)
Enthalpy (RNA) Entropy (RNA)

Table 9. The names of the 11 physicochemical indices for dinucleotides.

Shift Slide Rise
Tilt Roll Twist
Stacking energy Enthalpy Entropy

Free energy Hydrophilicity

Table 10. The names of the 547 physicochemical indices for amino acids.

Hydrophobicity Hydrophilicity Mass

ARGP820102 ARGP820103 BEGF750101

BHAR880101 BIGC670101 BIOV880101

BROC820102 BULH740101 BULH740102

BUNA790103 BURA740101 BURA740102

CHAM820102 CHAM830101 CHAM830102

CHAM830105 CHAM830106 CHAM830107

60

CHOC760101 CHOC760102 CHOC760103

CHOP780201 CHOP780202 CHOP780203

CHOP780206 CHOP780207 CHOP780208

CHOP780211 CHOP780212 CHOP780213

CHOP780216 CIDH920101 CIDH920102

CIDH920105 COHE430101 CRAJ730101

DAWD720101 DAYM780101 DAYM780201

EISD840101 EISD860101 EISD860102

FASG760102 FASG760103 FASG760104

FAUJ880101 FAUJ880102 FAUJ880103

FAUJ880106 FAUJ880107 FAUJ880108

FAUJ880111 FAUJ880112 FAUJ880113

FINA910102 FINA910103 FINA910104

GEIM800102 GEIM800103 GEIM800104

GEIM800107 GEIM800108 GEIM800109

GOLD730101 GOLD730102 GRAR740101

GUYH850101 HOPA770101 HOPT810101

HUTJ700103 ISOY800101 ISOY800102

ISOY800105 ISOY800106 ISOY800107

JANJ780102 JANJ780103 JANJ790101

JOND750102 JOND920101 JOND920102

KANM800101 KANM800102 KANM800103

KARP850102 KARP850103 KHAG800101

KRIW790101 KRIW790102 KRIW790103

LEVM760101 LEVM760102 LEVM760103

LEVM760106 LEVM760107 LEVM780101

LEVM780104 LEVM780105 LEVM780106

LIFS790102 LIFS790103 MANP780101

MAXF760103 MAXF760104 MAXF760105

MEEJ800101 MEEJ800102 MEEJ810101

MEIH800102 MEIH800103 MIYS850101

NAGK730103 NAKH900101 NAKH900102

NAKH900105 NAKH900106 NAKH900107

NAKH900110 NAKH900111 NAKH900112

NAKH920102 NAKH920103 NAKH920104

NAKH920107 NAKH920108 NISK800101

OOBM770101 OOBM770102 OOBM770103

OOBM850101 OOBM850102 OOBM850103

PALJ810101 PALJ810102 PALJ810103

PALJ810106 PALJ810107 PALJ810108

PALJ810111 PALJ810112 PALJ810113

PALJ810116 PARJ860101 PLIV810101

PONP800103 PONP800104 PONP800105

PONP800108 PRAM820101 PRAM820102

PRAM900102 PRAM900103 PRAM900104

QIAN880101 QIAN880102 QIAN880103

QIAN880106 QIAN880107 QIAN880108

QIAN880111 QIAN880112 QIAN880113

QIAN880116 QIAN880117 QIAN880118

QIAN880121 QIAN880122 QIAN880123

QIAN880126 QIAN880127 QIAN880128

QIAN880131 QIAN880132 QIAN880133

QIAN880136 QIAN880137 QIAN880138

61

RACS770102 RACS770103 RACS820101

RACS820104 RACS820105 RACS820106

RACS820109 RACS820110 RACS820111

RACS820114 RADA880101 RADA880102

RADA880105 RADA880106 RADA880107

RICJ880102 RICJ880103 RICJ880104

RICJ880107 RICJ880108 RICJ880109

RICJ880112 RICJ880113 RICJ880114

RICJ880117 ROBB760101 ROBB760102

ROBB760105 ROBB760106 ROBB760107

ROBB760110 ROBB760111 ROBB760112

ROSG850101 ROSG850102 ROSM880101

SIMZ760101 SNEP660101 SNEP660102

SUEM840101 SUEM840102 SWER830101

TANS770103 TANS770104 TANS770105

TANS770108 TANS770109 TANS770110

VASM830103 VELV850101 VENT840101

WEBA780101 WERD780101 WERD780102

WOEC730101 WOLR810101 WOLS870101

YUTK870101 YUTK870102 YUTK870103

ZIMJ680101 ZIMJ680102 ZIMJ680103

AURR980101 AURR980102 AURR980103

AURR980106 AURR980107 AURR980108

AURR980111 AURR980112 AURR980113

AURR980116 AURR980117 AURR980118

ONEK900101 ONEK900102 VINM940101

VINM940104 MUNV940101 MUNV940102

MUNV940105 WIMW960101 KIMC930101

PARS000101 PARS000102 KUMS000101

KUMS000104 TAKK010101 FODM020101

NADH010103 NADH010104 NADH010105

MONM990201 KOEP990101 KOEP990102

CEDJ970103 CEDJ970104 CEDJ970105

FUKS010103 FUKS010104 FUKS010105

FUKS010108 FUKS010109 FUKS010110

AVBF000101 AVBF000102 AVBF000103

AVBF000106 AVBF000107 AVBF000108

MITS020101 TSAJ990101 TSAJ990102

WILM950101 WILM950102 WILM950103

GUOD860101 JURD980101 BASU050101

SUYM030101 PUNT030101 PUNT030102

GEOR030103 GEOR030104 GEOR030105

GEOR030108 GEOR030109 ZHOH040101

BAEK050101 HARY940101 PONJ960101

OLSK800101 KIDA850101 GUYH850102

GUYH850105 ROSM880104 ROSM880105

BLAS910101 CASG920101 CORJ870101

CORJ870104 CORJ870105 CORJ870106

MIYS990101 MIYS990102 MIYS990103

ENGD860101 FASG890101 TANS770101

ANDN920101 ARGP820101 TANS770106

BEGF750102 BEGF750103 VASM830101

BIOV880102 BROC820101 VHEG790101

62

BUNA790101 BUNA790102 WERD780103

CHAM810101 CHAM820101 WOLS870102

CHAM830103 CHAM830104 YUTK870104

CHAM830108 CHOC750101 ZIMJ680104

CHOC760104 CHOP780101 AURR980104

CHOP780204 CHOP780205 AURR980109

CHOP780209 CHOP780210 AURR980114

CHOP780214 CHOP780215 AURR980119

CIDH920103 CIDH920104 VINM940102

CRAJ730102 CRAJ730103 MUNV940103

DESM900101 DESM900102 MONM990101

EISD860103 FASG760101 KUMS000102

FASG760105 FAUJ830101 NADH010101

FAUJ880104 FAUJ880105 NADH010106

FAUJ880109 FAUJ880110 CEDJ970101

FINA770101 FINA910101 FUKS010101

GARJ730101 GEIM800101 FUKS010106

GEIM800105 GEIM800106 FUKS010111

GEIM800110 GEIM800111 AVBF000104

GRAR740102 GRAR740103 AVBF000109

HUTJ700101 HUTJ700102 COSI940101

ISOY800103 ISOY800104 WILM950104

ISOY800108 JANJ780101 BASU050102

JANJ790102 JOND750101 GEOR030101

JUKT750101 JUNJ780101 GEOR030106

KANM800104 KARP850101 ZHOH040102

KLEP840101 KRIW710101 DIGM050101

KYTJ820101 LAWE840101 GUYH850103

LEVM760104 LEVM760105 JACR890101

LEVM780102 LEVM780103 CORJ870102

LEWP710101 LIFS790101 CORJ870107

MAXF760101 MAXF760102 MIYS990104

MAXF760106 MCMT640101 TANS770102

MEEJ810102 MEIH800101 TANS770107

NAGK730101 NAGK730102 VASM830102

NAKH900103 NAKH900104 WARP780101

NAKH900108 NAKH900109 WERD780104

NAKH900113 NAKH920101 WOLS870103

NAKH920105 NAKH920106 ZASB820101

NISK860101 NOZY710101 ZIMJ680105

OOBM770104 OOBM770105 AURR980105

OOBM850104 OOBM850105 AURR980110

PALJ810104 PALJ810105 AURR980115

PALJ810109 PALJ810110 AURR980120

PALJ810114 PALJ810115 VINM940103

PONP800101 PONP800102 MUNV940104

PONP800106 PONP800107 BLAM930101

PRAM820103 PRAM900101 KUMS000103

PTIO830101 PTIO830102 NADH010102

QIAN880104 QIAN880105 NADH010107

QIAN880109 QIAN880110 CEDJ970102

QIAN880114 QIAN880115 FUKS010102

QIAN880119 QIAN880120 FUKS010107

63

QIAN880124 QIAN880125 FUKS010112

QIAN880129 QIAN880130 AVBF000105

QIAN880134 QIAN880135 YANJ020101

QIAN880139 RACS770101 PONP930101

RACS820102 RACS820103 KUHL950101

RACS820107 RACS820108 BASU050103

RACS820112 RACS820113 GEOR030102

RADA880103 RADA880104 GEOR030107

RADA880108 RICJ880101 ZHOH040103

RICJ880105 RICJ880106 WOLR790101

RICJ880110 RICJ880111 GUYH850104

RICJ880115 RICJ880116 COWR900101

ROBB760103 ROBB760104 CORJ870103

ROBB760108 ROBB760109 CORJ870108

ROBB760113 ROBB790101 MIYS990105

ROSM880102 ROSM880103 SNEP660104

SNEP660103

Table 11. The names of the 3 physicochemical indices for amino acids.

Hydrophobicity hydrophilicity mass

Table 12. The names of the 2 physicochemical indices for amino acids.

Hydrophobicity hydrophilicity

References
1. Cortes, C. and Vapnik, V. (1995) Support-vector networks. Machine learning, 20, 273-297.

2. Ho, T.K. (1995), Document Analysis and Recognition, 1995., Proceedings of the Third

International Conference on. IEEE, Vol. 1, pp. 278-282.

3. Ho, T.K. (1998) The random subspace method for constructing decision forests. IEEE transactions

on pattern analysis and machine intelligence, 20, 832-844.

4. Dong, Z.J., Wang, K.Y., Dang, T.K.L., Gultas, M., Welter, M., Wierschin, T., Stanke, M. and

Waack, S. (2014) CRF-based models of protein surfaces improve protein-protein interaction site

predictions. Bmc Bioinformatics, 15.

5. Chang, C.C. and Lin, C.J. (2011) LIBSVM: A Library for Support Vector Machines. Acm T Intel

Syst Tec, 2, 1-27.

6. FlexCRFs: Flexible Conditional Random Fields. Available online:

http://flexcrfs.sourceforge.net/documents.html.

7. Williams, T. and Kelley, C. (2006) Gnuplot: an interactive plotting program. Mourrain Ufk.

8. Van Der Walt, S., Colbert, S.C. and Varoquaux, G. (2011) The NumPy array: a structure for

efficient numerical computation. Computing in Science & Engineering, 13, 22-30.

9. Jones, E., Oliphant, T. and Peterson, P. (2014) {SciPy}: open source scientific tools for {Python}.

10. Hunter, J.D. (2007) Matplotlib: A 2D graphics environment. Computing In Science & Engineering,

9, 90-95.

11. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,

Prettenhofer, P., Weiss, R. and Dubourg, V. (2011) Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12, 2825-2830.

12. Lemaitre, G., Nogueira, F. and Aridas, C.K. (2017) Imbalanced-learn: A Python Toolbox to Tackle

the Curse of Imbalanced Datasets in Machine Learning.

13. Mckinney, W. (2011) pandas: a Foundational Python Library for Data Analysis and Statistics. Dlr

De.

14. Jones, D.T. (1999) Protein secondary structure prediction based on position-specific scoring

matrices. Journal of Molecular Biology, 292, 195-202.

15. Cuff, J.A. and Barton, G.J. (2000) Application of multiple sequence alignment profiles to improve

protein secondary structure prediction. Proteins-structure Function & Bioinformatics, 40,

502-511.

16. Heffernan, R., Paliwal, K., Lyons, J., Dehzangi, A., Sharma, A., Wang, J., Sattar, A., Yang, Y. and

http://flexcrfs.sourceforge.net/documents.html

64

Zhou, Y. (2015) Improving prediction of secondary structure, local backbone angles, and solvent

accessible surface area of proteins by iterative deep learning. Scientific Reports, 5, 11476.

17. Yang, Y., Heffernan, R., Paliwal, K., Lyons, J., Dehzangi, A., Sharma, A., Wang, J., Sattar, A. and

Zhou, Y. (2017) SPIDER2: A Package to Predict Secondary Structure, Accessible Surface Area,

and Main-Chain Torsional Angles by Deep Neural Networks.

18. Pupko, T., Bell, R.E., Mayrose, I., Glaser, F. and Ben-Tal, N. (2002) Rate4Site: an algorithmic tool

for the identification of functional regions in proteins by surface mapping of evolutionary

determinants within their homologues. Bioinformatics, 18 Suppl 1, S71.

19. Glaser, F., Rosenberg, Y.A., Pupko, T. and Ben, T.N. (2005) The ConSurf-HSSP database: the

mapping of evolutionary conservation among homologs onto PDB structures. Proteins-structure

Function & Bioinformatics, 58, 610.

20. Liu, B., Li, K., Huang, D.S. and Chou, K.C. (2018) iEnhancer-EL: identifying enhancers and their

strength with ensemble learning approach. Bioinformatics, 34, 3835-3842.

21. Zou, Q., Sr., Xing, P., Wei, L. and Liu, B. (2018) Gene2vec: Gene Subsequence Embedding for

Prediction of Mammalian N6-Methyladenosine Sites from mRNA. RNA.

22. Liu, B., Fang, L., Liu, F., Wang, X., Chen, J. and Chou, K.-C. (2015) Identification of real

microRNA precursors with a pseudo structure status composition approach. PloS one, 10,

e0121501.

23. Liu, Y., Wang, X. and Liu, B. (2018) IDP(-)CRF: Intrinsically Disordered Protein/Region

Identification Based on Conditional Random Fields. Int J Mol Sci, 19.

24. Liu, B., Fang, Y., Huang, D.-s. and Chou, K.-C. (2018) iPromoter-2L: a two-layer predictor for

identifying promoters and their types by multi-window-based PseKNC. Bioinformaitcs, 34, 33-40.

25. Lemaitre, G., Nogueira, F. and Aridas, C.K. (2017) Imbalanced-learn: A python toolbox to tackle

the curse of imbalanced datasets in machine learning. Journal of Machine Learning Research, 18,

1-5.

26. Fawcett, T. (2006) An introduction to ROC analysis. Pattern recognition letters, 27, 861-874.

27. Chou, K.C. and Shen, H.B. (2006) Predicting eukaryotic protein subcellular location by fusing

optimized evidence-theoretic K-nearest neighbor classifiers. J. Proteome Res, 5, 1888–1897.

28. Jia, J., Zhang, L., Liu, Z., Xiao, X. and Chou, K. (2016) pSumo-CD: predicting sumoylation sites

in proteins with covariance discriminant algorithm by incorporating sequence-coupled effects into

general PseAAC. Bioinformaitcs, 32, 3133-3141.

29. Lou, W., Wang, X., Chen, F., Chen, Y., Jiang, B. and Zhang, H. (2014) Sequence based prediction

of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian

naive Bayes. PLoS One, 9, e86703.

30. Yoo, P.D., Zhou, B.B. and Zomaya, A.Y. (2008) Machine learning techniques for protein

secondary structure prediction: An overview and evaluation. Curr Bioinform, 3, 74-86.

31. Doench, J.G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E.W., Donovan, K.F., Smith, I.,

Tothova, Z., Wilen, C., Orchard, R. et al. (2016) Optimized sgRNA design to maximize activity

and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol, 34, 184-+.

32. Friedel, M., Nikolajewa, S., Suhnel, J. and Wilhelm, T. (2009) DiProDB: a database for

dinucleotide properties. Nucleic Acids Res, 37, D37-D40.

33. Chen, W., Lei, T.Y., Jin, D.C., Lin, H. and Chou, K.C. (2014) PseKNC: A flexible web server for

generating pseudo K-tuple nucleotide composition. Anal Biochem, 456, 53-60.

34. Altschul, S., Madden, T., Schaffer, A., Zhang, J.H., Zhang, Z., Miller, W. and Lipman, D. (1998)

Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Faseb J,

12, A1326-A1326.

35. Liu, B., Liu, F., Wang, X., Chen, J., Fang, L. and Chou, K.-C. (2015) Pse-in-One: a web server for

generating various modes of pseudo components of DNA, RNA, and protein sequences. Nucleic

Acids Research, 43, W65-W71.

36. Gupta, S., Dennis, J., Thurman, R.E., Kingston, R., Stamatoyannopoulos, J.A. and Noble, W.S.

(2008) Predicting human nucleosome occupancy from primary sequence. PLoS computational

biology, 4, e1000134.

37. Noble, W.S., Kuehn, S., Thurman, R., Yu, M. and Stamatoyannopoulos, J. (2005) Predicting the in

vivo signature of human gene regulatory sequences. Bioinformatics, 21 Suppl 1, i338-343.

38. Chen, W., Luo, L. and Zhang, L. (2010) The organization of nucleosomes around splice sites.

Nucleic acids research, 38, 2788-2798.

39. Chen, H., Ouseph, M.M., Li, J., Pecot, T., Chokshi, V., Kent, L., Bae, S., Byrne, M., Duran, C.,

Comstock, G. et al. (2012) Canonical and atypical E2Fs regulate the mammalian endocycle.

Nature Cell Biology, 14, 1192-1202.

40. Liu, B., Fang, L.Y., Liu, F.L., Wang, X.L., Chen, J.J. and Chou, K.C. (2015) Identification of Real

MicroRNA Precursors with a Pseudo Structure Status Composition Approach. Plos One, 10.

41. El-Manzalawy, Y., Dobbs, D. and Honavar, V. (2008) Predicting flexible length linear B-cell

epitopes. Computational Systems Bioinformatics, 7, 121-132.

42. Leslie, C.S., Eskin, E., Cohen, A., Weston, J. and Noble, W.S. (2004) Mismatch string kernels for

discriminative protein classification. Bioinformatics, 20, 467-476.

43. Luo, L., Li, D., Zhang, W., Tu, S., Zhu, X. and Tian, G. (2016) Accurate prediction of

65

transposon-derived piRNAs by integrating various sequential and physicochemical features. PloS

one, 11, e0153268.

44. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N. and Watkins, C. (2002) Text

classification using string kernels. Journal of Machine Learning Research, 2, 419-444.

45. Dong, Q., Zhou, S. and Guan, J. (2009) A new taxonomy-based protein fold recognition approach

based on autocross-covariance transformation. Bioinformatics, 25, 2655-2662.

46. Friedel, M., Nikolajewa, S., Sühnel, J. and Wilhelm, T. (2009) DiProDB: a database for

dinucleotide properties. Nucleic acids research, 37, D37-D40.

47. Horne, D.S. (1988) Prediction of protein helix content from an autocorrelation analysis of

sequence hydrophobicities. Biopolymers, 27, 451-477.

48. Chen, W., Zhang, X., Brooker, J., Lin, H., Zhang, L. and Chou, K.-C. (2015b) PseKNC-General: a

cross-platform package for generating various modes of pseudo nucleotide compositions.

Bioinformatics, 31, 119-120.

49. Sokal, R.R. and Thomson, B.A. (2006) Population structure inferred by local spatial

autocorrelation: an example from an Amerindian tribal population. American journal of physical

anthropology, 129, 121-131.

50. Feng, Z.-P. and Zhang, C.-T. (2000) Prediction of membrane protein types based on the

hydrophobic index of amino acids. Journal of protein chemistry, 19, 269-275.

51. Chen, W., Feng, P.M., Lin, H. and Chou, K.C. (2013) iRSpot-PseDNC: identify recombination

spots with pseudo dinucleotide composition. Nucleic Acids Res, 41, e68.

52. Guo, S.-H., Deng, E.-Z., Xu, L.-Q., Ding, H., Lin, H., Chen, W. and Chou, K.-C. (2014)

iNuc-PseKNC: a sequence-based predictor for predicting nucleosome positioning in genomes with

pseudo k-tuple nucleotide composition. Bioinformatics, btu083.

53. Lin, H., Deng, E.-Z., Ding, H., Chen, W. and Chou, K.-C. (2014) iPro54-PseKNC: a

sequence-based predictor for identifying sigma-54 promoters in prokaryote with pseudo k-tuple

nucleotide composition. Nucleic acids research, 42, 12961-12972.

54. Liu, B., Zhang, D., Xu, R., Xu, J., Wang, X., Chen, Q., Dong, Q. and Chou, K.-C. (2014)

Combining evolutionary information extracted from frequency profiles with sequence-based

kernels for protein remote homology detection. Bioinformatics, 30, 472-479.

55. Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M. and Schuster, P. (1994)

Fast Folding and Comparison of Rna Secondary Structures. Monatsh Chem, 125, 167-188.

56. Guo, Y., Yu, L., Wen, Z. and Li, M. (2008) Using support vector machine combined with auto

covariance to predict protein–protein interactions from protein sequences. Nucleic acids research,

36, 3025-3030.

57. Xue, C., Li, F., He, T., Liu, G.-P., Li, Y. and Zhang, X. (2005) Classification of real and pseudo

microRNA precursors using local structure-sequence features and support vector machine. BMC

bioinformatics, 6, 1.

58. Liu, B., Fang, L., Liu, F., Wang, X. and Chou, K.-C. (2016) iMiRNA-PseDPC: microRNA

precursor identification with a pseudo distance-pair composition approach. Journal of

Biomolecular Structure and Dynamics, 34, 223-235.

59. Wang, J.T.L., Ma, Q., Shasha, D. and Wu, C.H. (2001) New techniques for extracting features

from protein sequences. Ibm Syst J, 40, 426-441.

60. White G , S.W. (1998) Using a neural network to backtranslate amino acid sequences. . Electron. J.

Biotechnol. , 17-18.

61. Lin, K., May, A.C.W. and Taylor, W.R. (2002) Amino acid encoding schemes from protein

structure alignments: Multi-dimensional vectors to describe residue types. J Theor Biol, 216,

361-365.

62. Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T. and Kanehisa, M.

(2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res, 36,

D202-D205.

63. Cuff, J.A. and Barton, G.J. (2000) Application of Multiple Sequence Alignment Profiles to

Improve Protein Secondary Structure Prediction. Proteins: Structure, Function, and

Bioinformatics, 40, 502-511.

64. Heffernan, R., Paliwal, K., Lyons, J., Dehzangi, A., Sharma, A., Wang, J., Sattar, A., Yang, Y. and

Zhou, Y. (2015) Improving prediction of secondary structure, local backbone angles, and solvent

accessible surface area of proteins by iterative deep learning. Scientific reports, 5, 11476.

65. MO., D. (1978;) A model of evolutionary change in proteins. . Atlas Protein Seq. Struct. , 5, 89–99.

66. Henikoff, S. and Henikoff, J.G. (1992) Amino-Acid Substitution Matrices from Protein Blocks. P

Natl Acad Sci USA, 89, 10915-10919.

67. Altschul, S.F. and Koonin, E.V. (1998) Iterated profile searches with PSI-BLAST - a tool for

discovery in protein databases. Trends Biochem Sci, 23, 444-447.

68. Liu, B., Zhang, D.Y., Xu, R.F., Xu, J.H., Wang, X.L., Chen, Q.C., Dong, Q.W. and Chou, K.C.

(2014) Combining evolutionary information extracted from frequency profiles with

sequence-based kernels for protein remote homology detection. Bioinformatics, 30, 472-479.

69. Glaser, F., Rosenberg, Y., Kessel, A., Pupko, T. and Ben-Tal, N. (2005) The ConSurf-HSSP

Database: The Mapping of Evolutionary Conservation Among Homologs Onto PDB Structures.

66

Proteins: Structure, Function, and Bioinformatics, 58, 610-617.

70. Liu, B., Wang, X., Lin, L., Dong, Q. and Wang, X. (2008) A discriminative method for protein

remote homology detection and fold recognition combining Top-n-grams and latent semantic

analysis. BMC bioinformatics, 9, 1.

71. Liu, B., Zhang, D., Xu, R., Xu, J., Wang, X., Chen, Q., Dong, Q. and Chou, K.C. (2014)

Combining evolutionary information extracted from frequency profiles with sequence-based

kernels for protein remote homology detection. Bioinformatics, 30, 472-479.

72. Liu, B., Xu, J., Lan, X., Xu, R., Zhou, J., Wang, X. and Chou, K.-C. (2014) iDNA-Prot| dis:

identifying DNA-binding proteins by incorporating amino acid distance-pairs and reduced

alphabet profile into the general pseudo amino acid composition. PloS one, 9, e106691.

73. Liu, B., Wang, X., Chen, Q., Dong, Q. and Lan, X. (2012) Using amino acid physicochemical

distance transformation for fast protein remote homology detection. PLoS One, 7, e46633.

74. Chou, K.C. (2001) Prediction of protein cellular attributes using pseudo‐amino acid composition.

Proteins: Structure, Function, and Bioinformatics, 43, 246-255.

75. Chou, K.-C. (2005) Using amphiphilic pseudo amino acid composition to predict enzyme

subfamily classes. Bioinformatics, 21, 10-19.

76. Kawashima, S., Pokarowski, P., Pokarowska, M., Kolinski, A., Katayama, T. and Kanehisa, M.

(2008) AAindex: amino acid index database, progress report 2008. Nucleic acids research, 36,

D202-D205.

77. Xu, R., Zhou, J., Wang, H., He, Y., Wang, X. and Liu, B. (2015) Identifying DNA-binding proteins

by combining support vector machine and PSSM distance transformation. BMC Systems Biology, 9,

S10.

78. Zhou, J., Lu, Q., Xu, R., He, Y. and Wang, H. (2017) EL_PSSM-RT: DNA-binding residue

prediction by integrating ensemble learning with PSSM Relation Transformation. BMC

bioinformatics, 18, 379.

