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1. Introduction 

Pse-Analysis is a powerful Python package for constructing machine-learning-based 
computational predictors for computational proteomics, genomics. Pse-Analysis is 
developed based on the framework of LIBSVM (Chang and Lin, 2011), and provides 
comprehensive functions, including feature extractions for DNA, RNA ,and proteins, 
parameter optimization, training SVM model, prediction, result evaluation, etc. All 
these functions can be easily used by the users with only two Python scripts: “train.py” 
and “predict.py”. Furthermore, the multiprocessing technique is applied to 
significantly reduce the computational cost of Pse-Analysis.  
The flowchart of Pse-Analysis is shown in Fig. 1. More details will be introduced in 
the following sections. 

 
Fig. 1. The flowchart of Pse-Analysis Python package. 

2. Installation 

The Pse-Analysis Python package supports the Linux (64-bit) and Windows (64-bit) 
operating system. The full package and documents of Pse-Analysis are available at 
http://bioinformatics.hitsz.edu.cn/Pse-Analysis/. Before using Pse-Analysis, the 
Python software should be first installed and configured. Python 2.7 64-bit is 
recommended, which can be downloaded from https://www.python.org. 
 
For Windows operating system, the Windows 7 or later versions are supported. Extract 
the package to a directory. After un-zip the downloaded Pse-Analysis package, make 
sure that the “libsvm.dll” is available in the directory “…\libsvm\windows”.  
 
For Linux operating system, the LIBSVM should be configured firstly. Un-zip the 
Pse-Analysis package to a folder, for example, “~/usr”. Navigate to 
“~/usr/Pse-Analysis/libsvm” directory, and type the command: 
> make 
 

http://bioinformatics.hitsz.edu.cn/Pse-Analysis/
https://www.python.org/
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After executing successfully, then navigate to “~/usr/Pse-Analysis/libsvm/python” 
directory, and type the command: 
> make 
 
If gnuplot has not been installed, use the following command lines to install gnuplot: 
> sudo apt-get install gnuplot 
 
Now, Pse-Analysis is ready to use. 
For users’ convenience, an Ubuntu virtual machine image is available at 
http://bioinformatics.hitsz.edu.cn/Pse-Analysis/download. The Pse-Analysis package 
and the related system environment were all set in this image. 

3. Tutorial 

A simple tutorial is provided for quick start. 
Task: Reconstructing the predictor iNuc-PseKNC for predicting nucleosome 
positioning in C. elegans genome, and reproducing the reported experiments (Guo, et 
al., 2014) by using the Pse-Analysis package. 
The benchmark dataset (Guo, et al., 2014) used in this tutorial is consist of 
nucleosomal and linker sequences from C. elegans. There are 2567 positive samples 
and 2608 negative samples, which can be accessed from 
http://lin.uestc.edu.cn/server/iNucPseKNC/data/Supp-2.pdf. In this tutorial, the 
“DNA_pos.txt” represents the positive dataset and the “DNA_neg.txt” represents the 
negative dataset. Both the two files are given in the “/data/example” directory. 
 
The predictor iNuc-PseKNC can be constructed based on the benchmark dataset by 
using the following command line: 

python train.py ./data/example/DNA_pos.txt ./data/example/DNA_neg.txt DNA -m dna.model -v 
10 

Firstly, the input positive and negative datasets of DNA sequences are converted into 
fixed length feature vectors by using the PseKNC (Guo, et al., 2014; Lin, et al., 2014). 
Then the parameters of the feature extraction algorithm PseKNC are automatically 
optimized on the validation sets. The process of parameter selection and the optimal 
parameters will be output on the screen: 

Processing... 
Parameter selection is in processing... 
 
Iteration  k =  2  lamada =  5  finished. 
Iteration  k =  2  lamada =  7  finished. 
Iteration  k =  3  lamada =  5  finished. 
Iteration  k =  2  lamada =  9  finished. 
Iteration  k =  2  lamada =  11  finished. 

http://bioinformatics.hitsz.edu.cn/Pse-Analysis/download
http://lin.uestc.edu.cn/server/iNucPseKNC/data/Supp-2.pdf
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Iteration  k =  3  lamada =  7  finished. 
Iteration  k =  3  lamada =  9  finished. 
………… 
………… 
Iteration  k =  6  lamada =  13  finished. 
Iteration  k =  6  lamada =  11  finished. 
Iteration  k =  6  lamada =  15  finished. 
The time cost for parameter selection is 744.72s 
Parameter selection completed. 
The optimal parameters for the dataset are: k = 3  lambda = 5 

 
The next step is model training. The feature vectors generated by feature extraction 
algorithm with optimized parameters are fed into the Support Vector Machines 
(SVMs) to train the classifiers. A SVM model will be generated and will be saved as a 
file along with optimal parameters. In order to evaluate the performance of the model, 
10-fold cross validation is used and Five commonly used performance measures are 
calculated, including accuracy (ACC), Mathew’s Correlation Coefficient (MCC), 
Area Under roc Curve (AUC), sensitivity (Sn), and specificity (Sp). Furthermore, the 
corresponding ROC curve is also provided and saved in a PNG file. The related 
information will be output on the screen: 

Model training is in processing... 
The cross validation results are as follows: 
ACC = 0.8342 
MCC = 0.6759 
AUC = 0.9050 
Sn  = 0.9060 
Sp  = 0.7629 
The ROC curve has been saved. You can check it here: 
/Pse-Analysis/data/final_results/cross_validation.png 
 
Model training completed. 
The model has been saved. You can check it here: 
/Pse-Analysis/data/final_results/dna.model 
 
Done. 
Used time: 789.19s 

 
The generated ROC curve is shown in Fig. 2. 
The whole process of the command for analyzing elegans genome dataset is shown 
above. For more details of the process please refer to the following sections. 
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Fig .2. The ROC curve of cross validation. 

4. Function description 

4.1 Directory structure 

The main directory contains several Python files and folders. “train.py” and 
“predict.py” are two executive scripts. Their functions will be introduced in the 
following sections. “const.py” contains the constants used in the scripts. “util.py” 
provides the useful functions used in the scripts. “pse.py” implements the methods 
used for feature extraction, including Pseudo k-tuple nucleotide composition (PseKNC) 
(Guo, et al., 2014; Lin, et al., 2014), General parallel correlation pseudo dinucleotide 
composition (PC-PseDNC) (Chen, et al., 2015), and Parallel correlation pseudo amino 
acid composition (PC-PseAAC) (Chou, 2001). “libsvm” folder contains the LIBSVM 
package. The tool for drawing ROC curve is in the “gnuplot” folder. “docs” folder 
contains the manual of Pse-Analysis. In “data” folder, there are four subfolders: 
“example” folder contains the dataset files used in the example, a shell script file and 
a batch file used for example demonstration on Linux and Windows operating systems 
respectively; “final_results” folder is used for storing the generated model file while 
the “gen_files” folder is used for storing the generated data files in the parameter 
selection process; the data files used for feature extraction are stored in the “pse_data” 
folder. Modifications of these files are not suggested. 

4.2 train.py 

Basic functions 
 
The “train.py” is used for training SVM-based predictors and evaluating their 
performance based on the input benchmark datasets. There are four main processes of 
“train.py”, including feature extraction, parameter selection, model training and cross 
validation. In the feature extraction process, the features of DNA, RNA, and protein 



7 
 
sequences can be extracted by Pseudo k-tuple nucleotide composition (PseKNC) (Guo, 
et al., 2014; Lin, et al., 2014), General parallel correlation pseudo dinucleotide 
composition (PC-PseDNC) (Chen, et al., 2015), and Parallel correlation pseudo amino 
acid composition (PC-PseAAC) (Chou, 2001), respectively. During the parameter 
selection process, the parameters in the feature extraction algorithm are optimized on 
the validation sets. In this process, the multiprocessing technique is employed to 
significantly reduce the computational cost. In the model training process, the 
LIBSVM package is employed to train the prediction models. Finally, in the cross 
validation process, the performance of the constructed predictors is evaluated by 
5-fold cross-validation. For more details of these four processes, please refer to the 
“Methods description” section. 
 
Input and output 
 
The input files of “train.py” are two FASTA files, storing the positive samples, and 
negative samples, respectively. The output file is the trained SVM model listing the 
parameters used in the training process and the log information, for example: 
 

k,4,lamada,6,w,0.5,c,128,g,0.5,b,0 
svm_type c_svc 
kernel_type rbf 
gamma 0.5 
nr_class 2 
total_sv 2871 
rho 33.5904 
label 1 -1 
nr_sv 1441 1430 
SV 
128 1:0.00108139 2:0.00108139 3:0.00108139 …… 
…… 

 

4.3 predict.py 

Basic functions 
 
The “predict.py” predicts the unseen samples independent from the benchmark 
dataset based on the trained model generated by using “train.py”. The performance of 
the constructed predictors is evaluated by five common performance measures, and 
the corresponding ROC curves can also be generated. For more information of these 
functions, please refer to the “Methods description” section. 
 
Input and output 
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The input file of “predict.py” is an independent dataset in FASTA format. If the label 
information of the samples is available, the performance measures of the predictors 
will be calculated based on the predicted labels and the input real labels, otherwise, 
the performance will not be evaluated. One label should be listed in each line in the 
label file, for example: 
 
+1 
+1 
+1 
-1 
-1 
-1 
…… 

 
The output of “predict.py” is a file containing the predicted labels in the same format as 
the input label file.  

5. Commands 

5.1 “train.py” Usage 

Command line arguments for “train.py”: 
required description 

Posfile The input positive sequence file in FASTA format. 
Negfile The input negative sequence file in FASTA format. 

{DNA, RNA, Protein} 
-m M 

 

The sequence type. 
The name of the trained SVM model.  

 
 

Optional description 
-h, --help Show this help message and exit. 
-k  K The k value of kmer. It works only with PseKNC 

method for DNA sequences. 
-w W The value of the parameter w for PseKNC, 

PC-PseDNC, and PC-PseAAC. Default value is 
1.0. 
 -lamada LAMADA The value of parameter lambda for for PseKNC, 
PC-PseDNC, and PC-PseAAC. 

-p {ACC,MCC,AUC} The performance metric used for parameter 
selection. Default value is “ACC”. 
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-v V The cross validation mode. 
n: (an integer larger than 0) n-fold cross 
validation. 
j: (character “j”) jackknife cross validation. 
i: (character 'i') independent test set method. 

-ipos IPOS The name of positive independent test dataset. 
If the parameter “-v” is specified as “i”, a 
positive or negative independent test dataset 
should be included.  

-ineg INEG The name of negative independent test dataset. 
If the parameter “-v” is specified as “i”, a 
positive or negative independent test dataset 
should be included. 

-c C The parameter C of RBF kernel. Default value 
is 128. 

-g G The parameter gamma of RBF kernel. Default 
value is 0.5. 
 -b {0,1} Whether to train a SVC or SVR model 
for probability estimates, 0 or 1. 
Default value is 0. 

 -cpu CPU  The maximum number of CPU cores used for 
multiprocessing during parameter selection 
process. Default value is the number of all 
available CPU cores. 

 
 

5.2 “predict.py” Usage 

Command line arguments for “predict.py”: 
required description 

inputfile The input sequence file in FASTA format. 
{DNA, RNA, Protein} The sequence type. 

 -m M 
 

The name of trained model generated by using 
“train.py”. 

 
 

optional description 
-h, --help Show this help message and exit. 
-labels LABELS The real label file. Optional. 
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-o O The output file name listing the 
predicted labels. The default name is 
“output_labels.txt”. 

   
 

5.3 Example 

An example of using Pse-Analysis to construct machine learning predictor for solving 
a specific task in bioinformatics is given.  
Example: Reconstructing the predictor PseDNA-Pro for DNA binding protein 
identification based on the a benchmark dataset (Liu, et al., 2015), and evaluating its 
performance on an independent dataset (Lou, et al., 2014) by using Pse-Analysis 
package.  
 
The benchmark (Liu, et al., 2015) dataset contains 525 positive samples and 550 
negative samples. There are 82 positive samples and 99 negative samples in the 
independent dataset. The benchmark dataset and independent dataset are available at  
http://bioinformatics.hitsz.edu.cn/PseDNA-Pro/Resources/benchmark_dataset.pdf, 
and, 
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pon
e.0086703.s002, respectively. 
 
In this example, the files “protein_pos.txt” and “protein_neg.txt” contain the positive 
dataset and negative dataset of the benchmark dataset, respectively. The samples of 
the independent dataset and their labels are stored in the files “protein_test.txt” and 
“labels.txt”, respectively. All these four files are available in the “/data/example” 
folder. 
 
The predictor PseDNA-Pro can be constructed based on the benchmark dataset by 
using the following common line: 

python train.py ./data/example/protein_pos.txt ./data/example/protein_neg.txt Protein -m 
protein.model -v 10 

 
The output information is as follows: 

Processing... 
Parameter selection is in processing... 
 
Iteration  w =  0.0  lamada =  5  finished. 
Iteration  w =  1.0  lamada =  5  finished. 
Iteration  w =  0.8  lamada =  5  finished. 
Iteration  w =  0.4  lamada =  5  finished. 
Iteration  w =  0.0  lamada =  7  finished. 

http://bioinformatics.hitsz.edu.cn/PseDNA-Pro/Resources/benchmark_dataset.pdf
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0086703.s002
http://journals.plos.org/plosone/article/asset?unique&id=info:doi/10.1371/journal.pone.0086703.s002
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Iteration  w =  0.6  lamada =  5  finished. 
Iteration  w =  0.2  lamada =  5  finished. 
Iteration  w =  0.4  lamada =  7  finished. 
Iteration  w =  0.4  lamada =  9  finished. 
Iteration  w =  0.6  lamada =  7  finished. 
Iteration  w =  0.8  lamada =  9  finished. 
Iteration  w =  0.8  lamada =  7  finished. 
Iteration  w =  0.2  lamada =  7  finished. 
Iteration  w =  1.0  lamada =  7  finished. 
Iteration  w =  0.2  lamada =  9  finished. 
Iteration  w =  0.0  lamada =  9  finished. 
Iteration  w =  0.0  lamada =  11  finished. 
Iteration  w =  0.6  lamada =  9  finished. 
Iteration  w =  0.2  lamada =  11  finished. 
Iteration  w =  1.0  lamada =  11  finished. 
Iteration  w =  1.0  lamada =  9  finished. 
Iteration  w =  0.4  lamada =  11  finished. 
Iteration  w =  0.0  lamada =  13  finished. 
Iteration  w =  0.4  lamada =  13  finished. 
Iteration  w =  0.2  lamada =  13  finished. 
Iteration  w =  0.8  lamada =  11  finished. 
Iteration  w =  0.6  lamada =  15  finished. 
Iteration  w =  0.8  lamada =  13  finished. 
Iteration  w =  0.6  lamada =  13  finished. 
Iteration  w =  1.0  lamada =  13  finished. 
Iteration  w =  0.6  lamada =  11  finished. 
Iteration  w =  0.8  lamada =  15  finished. 
Iteration  w =  0.2  lamada =  15  finished. 
Iteration  w =  0.0  lamada =  15  finished. 
Iteration  w =  1.0  lamada =  15  finished. 
Iteration  w =  0.4  lamada =  15  finished. 
The time cost for parameter selection is 9.30s 
Parameter selection completed. 
The optimal parameter for the dataset is: w = 0.0  lambda = 7 
 
Model training is in processing... 
The cross validation results are as follows: 
ACC = 0.7524 
MCC = 0.5028 
AUC = 0.8128 
Sn  = 0.7387 
Sp  = 0.7651 
The ROC curve has been saved. You can check it here: 
/Pse-Analysis/data/final_results/cross_validation.png 
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Model training completed. 
The model has been saved. You can check it here: 
/Pse-Analysis/data/final_results/protein.model 
Done. 
Used time: 10.48s 
 

 
Then, the performance of PseDNA-Pro can be further evaluated by using the 
independent dataset: 

python predict.py ./data/example/protein_test.txt Protein -labels ./data/example/labels.txt -m 
protein.model 

 
The output information is as follows: 

Processing... 
The parameters of feature extraction method: 
w = 0.0  lambda = 7 
The parameters of RBF kernel: 
c = 128  g = 0.5 
The performance evaluations are as follows: 
 
ACC = 0.6774 
MCC = 0.3578 
AUC = 0.7283 
Sn  = 0.7419 
Sp  = 0.6129 
 
The ROC curve has been saved. You can check it here: 
/Pse-Analysis/data/final_results/predicted_roc.png 
 
The predicted labels have been saved. You can check it here: 
/Pse-Analysis/data/final_results/output_labels.txt 
 
Done. 
Used time: 0.79s 

 
As shown in this example, the PseDNA-Pro can be easily constructed based on the 
benchmark dataset by using the script “train.py”, and then evaluated on the 
independent dataset by using “predict.py”. 
 
One shell script file and one batch file used for example demonstration have been 
provided for users. The “demo.sh” and “demo.bat” are for Linux and Windows 
operating systems, respectively, which are accessible in “/data/example” folder. 
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6. Methods description 

6.1 Feature extraction 

In the Pse-Analysis, three state-of-the-art algorithms are employed, including Pseudo 
k-tuple nucleotide composition (PseKNC) (Guo, et al., 2014; Lin, et al., 2014), Parallel 
correlation pseudo dinucleotide composition (PC-PseDNC) (Chen, et al., 2015), and 
Parallel correlation pseudo amino acid composition (PC-PseAAC) (Chou, 2001) for 
extracting the features of DNA, RNA, and protein sequences, respectively. The detailed 
information of these three approaches will be introduced in the following sections. 

6.1.1 Pseudo k-tuple nucleotide composition (PseKNC) 

Suppose a DNA sequence D with L nucleic acid residues; i.e.  

1 2 3 4 5 6 7= R R R R R R R R L⋅ ⋅ ⋅D                                 (1) 
where R1 represents the nucleic acid residue at the sequence position 1, R2 the 
nucleic acid residue at position 2 and so forth. 

The feature vector of D is defined: 

 T
1 2 4 4 1 4

[      ]k k kd d  d d d
λ+ +

=D                           (2) 
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where λ is the number of the total counted ranks (or tiers) of the correlations along a 
DNA sequence; fu (u=1,2,⋯,4k) is the frequency of oligonucleotide that is 

normalized to
4

1
1

k
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which represents the j-tier structural correlation factor between all the j-th most 

contiguous dinucleotides. The correlation function +1 + + +1(R R , R R )i i i j i jΘ  is defined by 

2
+1 1 +1 +1

1

1(R R ,R R )= [ (R R ) (R R )]i i i j i j v i i v i j i+ j
v

P P
µ

µ+ + + +
=

Θ −∑          (5) 

where μ is the number of physicochemical indices, in this study, 6 indices reflecting 
the local DNA structural properties (Table 1) are employed to generate the PseKNC 
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feature vector; +1(R R )v i iP  ( +1(R R )v i j i+ jP + ) represents the numerical value of the v-th 

( 1, 2, )v µ= …, physicochemical index for the dinucleotide +1R Ri i  ( +1R Ri j i+ j+ ) at 

position i (i+j). 
Before substituting the values of physicochemical index into Eq. 5, they should be 
normalized by following equation: 

+1 +1
+1

+1

(R R ) (R R )
(R R )=

SD (R R )
v i i v i i

v i i
v i i

P P
P

P
−                         (6) 

where the symbol < > means taking the average of the quantity therein over the 16 

different combinations of A, C, G, T for +1R Ri i , and SD means the corresponding 

standard deviation. 
 
Table 1. The values of the 6 physicochemical indices for dinucleotides (DNA). 
Physicochemical 

properties 
Rise 

(DNA) 
Roll 

(DNA) 
Shift 

(DNA) 
Slide 

(DNA) 
Tilt 

(DNA) 
Twist 

(DNA) 
AA 7.650 2.260 1.690 0.026 0.020 0.038 
AC 8.930 3.030 1.320 0.036 0.023 0.038 
AG 7.080 2.030 1.460 0.031 0.019 0.037 
AT 9.070 3.830 1.030 0.033 0.022 0.036 
CA 6.380 1.780 1.070 0.016 0.017 0.025 
CC 8.040 1.650 1.430 0.026 0.019 0.042 
CG 6.230 2.000 1.080 0.014 0.016 0.026 
CT 7.080 2.030 1.460 0.031 0.019 0.037 
GA 8.560 1.930 1.320 0.025 0.020 0.038 
GC 9.530 2.610 1.200 0.025 0.026 0.036 
GG 8.040 1.650 1.430 0.026 0.019 0.042 
GT 8.930 3.030 1.320 0.036 0.023 0.038 
TA 6.230 1.200 0.720 0.017 0.016 0.018 
TC 8.560 1.930 1.320 0.025 0.020 0.038 
TG 6.380 1.780 1.070 0.016 0.017 0.025 
TT 7.650 2.260 1.690 0.026 0.020 0.038 

 

6.1.2 General parallel correlation pseudo dinucleotide composition (PC-PseDNC) 

Suppose a RNA sequence R with L nucleic acid residues; i.e. 

1 2 3 4 5 6 7= R R R R R R R R L⋅ ⋅ ⋅R                        (7) 

where R1 represents the nucleic acid residue at the sequence position 1, R2 the nucleic 
acid residue at position 2 and so forth. 
The PC-PseDNC (Chen, et al., 2015) feature vector of R is defined: 
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 T
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where fk（k=1,2,⋯,16) is the normalized occurrence frequency of dinucleotide in the 
RNA sequence; the parameter λ is an integer, representing the highest counted rank 
(or tier) of the correlation along a RNA sequence; w is the weight factor ranging from 

0 to 1; ( 1, 2, )j jθ λ= …, is called the j-tier correlation factor reflecting the 

sequence-order correlation between all the i-th most contiguous dinucleotides along 
an RNA sequence, which is defined: 
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where the correlation function is given by 

 2
1 1 1 1

1
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µ µ
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where μ is the number of physicochemical indices considered that are listed in the 
Table 2; Here in Pse-Analysis, we use 6 physicochemical indices: Rise (RNA), Roll 

(RNA), Shift (RNA), Slide (RNA), Tilt (RNA), Twist (RNA). 1 1(R R ) ( (R R ))u i i u j jP P+ +  

represents the numerical value of the u-th ( 1, 2, )u µ= …, physicochemical index for 

the dinucleotide 1 1R R (R R )i i j j+ +  at position i(j). 

Before substituting the values of physicochemical index into Eq. 11, they should be 
normalized by following equation: 

+1 +1
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where the symbol < > means taking the average of the quantity therein over the 16 
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different combinations of A, C, G, U for +1R Ri i , and SD means the corresponding 

standard deviation. 
 
 
Table 2. The values of the 6 physicochemical indices for dinucleotides (RNA). 
Physicochemical 

properties 
Rise 

(RNA) 
Roll 

(RNA) 
Shift 

(RNA) 
Slide 

(RNA) 
Tilt 

 (RNA) 
Twist 

(RNA) 
AA 3.180 7.000 -0.080 -1.270 -0.800 31.000 
AC 3.240 4.800 0.230 -1.430 0.800 32.000 
AG 3.300 8.500 -0.040 -1.500 0.500 30.000 
AU 3.240 7.100 -0.060 -1.360 1.100 33.000 
CA 3.090 9.900 0.110 -1.460 1.000 31.000 
CC 3.320 8.700 -0.010 -1.780 0.300 32.000 
CG 3.300 12.100 0.300 -1.890 -0.100 27.000 
CU 3.300 8.500 -0.040 -1.500 0.500 30.000 
GA 3.380 9.400 0.070 -1.700 1.300 32.000 
GC 3.220 6.100 0.070 -1.390 0.000 35.000 
GG 3.320 12.100 -0.010 -1.780 0.300 32.000 
GU 3.240 4.800 0.230 -1.430 0.800 32.000 
UA 3.260 10.700 -0.020 -1.450 -0.200 32.000 
UC 3.380 9.400 0.070 -1.700 1.300 32.000 
UG 3.090 9.900 0.110 -1.460 1.000 31.000 
UU 3.180 7.000 -0.080 -1.270 -0.800 31.000 

 

6.1.3 Parallel correlation pseudo amino acid composition (PC-PseAAC) 

PC-PseAAC (Chou, 2001) is an approach incorporating the contiguous local 
sequence-order information and the global sequence-order information into the 
feature vector of the protein sequence. 
Suppose a protein sequence P with L amino acid residues; i.e. 

1 2 3 4 5 6 7= R R R R R R R R L⋅ ⋅ ⋅P                           (13) 

where R1 represents the amino acid residue at the sequence position 1, R2 the amino 
acid residue at position 2 and so forth. The PC-PseAAC (Chou, 2001) feature vector 
of P is defined: 

 T
1 2 20 20 1 20[       ]x x x x x+ +λ=P                          (14) 

where 
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               (15) 

where fi (i=1,2,⋯,20) is the normalized occurrence frequency of the 20 amino acids in 
the protein P; the parameter λ is an integer, representing the highest counted rank (or 
tier) of the correlation along a protein sequence; w is the weight factor ranging from 0 

to 1; ( 1, 2, )j jθ λ= …, is called the j-tier correlation factor reflecting the sequence-order 

correlation between all the j-th most contiguous residues along a protein chain, which 
is defined: 
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                (16) 

where the correlation function is given by 

{ }2 2 2

1 1 2 2
1(R , R )= (R ) (R ) (R ) (R ) (R ) (R )
3i j j i j i j iH H H H M M     Θ − + − + −         (17) 

where 1(R )iH , 2 (R )iH , and (R )iM are, respectively, the hydrophobicity value, 

hydrophilicity value, and side-chain mass (Table 3) of the amino acid R i ; Note that 

before substituting the values of hydrophobicity, hydrophilicity, and side-chain mass 
into Eq. 17, they are all subjected to a standard conversion as described by the following 
equation: 
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where 0
1 ( )H i  is the original hydrophobicity value of the i-th amino acid; 0

2 ( )H i  the 

corresponding original hydrophilicity value; 0 ( )M i  the mass of the i-th amino acid 

side chain. 
 
 
Table 3. The values of the 3 physicochemical indices for amino acids. 

Physicochemical 
properties 

hydrophobicity hydrophilicity mass 

A 0.620 -0.500 71.079 
R -2.530 3.000 156.188 
N -0.780 0.200 114.104 
D -0.090 3.000 115.086 
C 0.290 -1.000 103.145 
Q -0.850 0.200 128.131 
E -0.740 3.000 129.116 
G 0.480 0.000 57.052 
H -0.400 -0.500 137.141 
I 1.380 -1.800 113.160 
L 1.530 -1.800 113.160 
K -1.500 3.000 128.170 
M 0.640 -1.300 131.990 
F 1.190 -2.500 147.177 
P 0.120 0.000 97.177 
S -0.180 0.300 87.078 
T -0.050 -0.400 101.105 
W 0.810 -3.400 186.123 
Y 0.260 -2.300 163.176 
V 1.800 -1.500 99.133 

 

6.2 Parameter selection 

As introduced above, there are several parameters in the three feature extraction 
methods, which should be optimized when constructing a predictor. Pse-Analysis is 
able to automatically optimize these parameters based on the best performance on the 
validation sets. To improve the efficiency of this procedure, multiprocessing technique 
is applied, which significantly reduces the computational cost.  
For PseKNC, two parameters k and λ are optimized. The ranges of parameters are as 
follows: 
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2 6,  step =1
5 15,  step =2

k
λ
≤ ≤ ∆

 ≤ ≤ ∆
                           (19) 

For PC-PseDNC, w and λ are the parameters to be optimized. The ranges of 
parameters are as follows: 

0 1,  step =0.2
5 15,  step =2

w
λ

≤ ≤ ∆
 ≤ ≤ ∆

                           (20) 

For PC-PseAAC, w and λ are the parameters to be optimized. The ranges of 
parameters are as follows: 

0 1,  step =0.2
5 15,  step =2

w
λ

≤ ≤ ∆
 ≤ ≤ ∆

                           (21) 

One of the three performance measures, including Accuracy (ACC), Mathew’s 
Correlation Coefficient (MCC) and Area Under roc Curve (AUC) can be used as the 
golden standard to optimize the parameters.  

6.3 Model training 

In the model training process, this model is trained based on LIBSVM with RBF 
kernel.  
The trained SVM model and all the parameters are saved in a separate file, which will 
be used as the input for “predict.py”. 

6.4 Cross validation 

Pse-Analysis provides three types of cross validation options, including k-fold cross 
validation, jackknife (leave-one-out cross validation) and independent dataset test, 
which can be chosen by the argument “-v”. Please refer to “Commands” section for 
more details. 
 
The performance the predictor is measured by five common performance measures, 
including the accuracy (Acc), Mathew’s Correlation Coefficient (MCC), Area Under 
roc Curve (AUC), sensitivity (Sn), and specificity (Sp). Furthermore, the ROC 
(Receiver Operating Characteristic) (Fawcett, 2006) curve will also be generated and 
saved in a PNG file. 

6.5 Sequence prediction 

The “predict.py” is used to predict the unseen samples based on the model trained by 
using “train.py”. The performance of the predictors can be further evaluated on the 
independent datasets. If the label information of the independent dataset is not 
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available, the performance of the predictor will not be evaluated, and only the 
predicted labels are given. Otherwise, this script will output the predicted labels, 
calculate the five performance measures (Acc, MCC, AUC, Sn, and Sp), and generate 
the corresponding ROC curve saved as a PNG file.     
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